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Resumo

A presente tese teve como objetivo a melhoria de um processo de produção de um API genérico

no site da Hovione em Sete Casas. Pretendeu-se optimizar o rendimento do passo final através da

metodologia do ciclo DMAIC. Durante o perı́odo analisado (de Julho de 2018 a Janeiro de 2021), o

rendimento apresentou um valor médio de 81,83% com uma amplitude total relativa de 11%. Foi

contabilizado que, em média e por ano, se perde um lote de produto final devido à variabilidade do

rendimento. Foram utilizadas técnicas de análise de dados multivariada no sentido de se encontrar

correlação estatı́stica entre as caracterı́sticas das matérias primas e as variáveis de processo com as

variáveis dependentes consideradas. Verificou-se que a impureza H e G presentes na matéria prima

para a etapa final do processo tinham um impacto negativo no rendimento. A análise estatı́stica das

variáveis de processo revelou que a cristalização é a operação mais crı́tica no passo final. Os mode-

los foram reconstruı́dos considerando a pureza do produto final em vez do rendimento como variável

de resposta. A contribuição das variáveis de processo para a qualidade do produto estava na mesma

linha do que para o rendimento. O processo conducente ao intermediário de entrada do passo final foi

também analisado tomando as impurezas H e G como variáveis dependentes. Embora os dados só

estivessem disponı́veis para 6 lotes de produção, algumas acções de melhoria puderam ser retiradas

a partir dos modelos. As acções de melhoria foram filtradas com base no seu impacto e esforço e

foi elaborada uma folha de controlo interactiva, bem como um fluxograma contendo o conhecimento

adquirido, a fim de manter as melhorias.

Palavras-chave: Indústria farmacêutica, Processo de produção de API, Ciclo DMAIC, Análise

de dados multivariada.
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Abstract

This thesis aimed at the improvement of a generic API production process at Hovione´s Sete Casas

site. Yield optimization of the final product production step was the problem to solve through the DMAIC

cycle methodology. Over the analysed period (from July 2018 to January 2021), yield had an average

value of 81.83% with a relative range of 11%. It was accounted that, on average and per year, a full batch

throughput is lost due to yield variability. Multivariate data analysis techniques were used in order to find

statistical correlation between input quality attributes and process variables with the response variables.

Impurity H and G present in the input material to the final product process step were found to negatively

impact the yield. The statistical analysis of the process variables revealed that the crystallization is the

most critical to yield operation. The models were re-built considering the final product´s assay instead

of yield as response variable. The contribution of the process variables to the quality of the product

was on the same line as for yield. The process leading to the input intermediary of the final product

process was also analysed taking impurity H and G as response variables. Although data was only

available for 6 production batches, some actions could be taken from the models. The improvement

actions were screened based on their impact and effort and an interactive control sheet as well as a

summary flowchart of the generated process understanding were elaborated in order to maintain the

improvements.

Keywords: Pharmaceutical industry, API production process, DMAIC cycle, Multivariate data

analysis.
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Glossary

API is the Active Pharmaceutical Ingredient, which is used to make the drug product. It is the ingredient

of any drug product that produces the intended effects. 3

CDMO Contract Development Manufacturing Organization is a company that serves other companies

in the pharmaceutical industry on a contract basis to provide comprehensive services from drug

development through drug manufacturing thus allowing the major company to focus on drug dis-

covery and drug marketing. 3

drug product is the final product that combines the drug substance and excipients. 1

drug substance the same as API. 1

FDA United States Food and Drug Administration is a federal entity of the Department of Health and

Human Services responsible for protecting and promoting public health through the control and

supervision of food safety, tobacco products, dietary supplements, pharmaceutical drugs, vac-

cines, biopharmaceuticals, blood transfusions, medical devices, electromagnetic radiation emitting

devices, cosmetics, animal foods and feed and veterinary products. 1

ICH International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human

Use is an organization that connects regulatory agencies and pharmaceutical industry to discuss

scientific and technical aspects of pharmaceutical product development and registration. 1

lead time the total time (calendar time) between the batch start and its completion. 5

LSL and USL lower specification limit (LSL) and upper specification limit (USL) are the limits imposed

by the customer for a variable of interest. Outside of these limits, the customer or the health

authority acceptance of the product or service will probably be impaired. 8

ppm parts per million. 8

SRM limiting Starting Raw Material used for a batch production. At Hovione, it can also be referred as

the respective batch size for production.. 5
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Chapter 1

Introduction

1.1 Motivation

The pharmaceutical industry has the noble mission of improving the quality of human life, striving to

find new medicines and new ways to alleviate the burden of disease.

The International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Hu-

man Use (ICH) quality guideline Q8 (ICH Q8) defines quality in the pharmaceutical industry as ”the

suitability of either a drug substance or drug product for its intended use. This term includes such at-

tributes as the identity, strength, and purity” [1]. Further consideration can be added to this definition

in terms of reliable clinical performance: a quality drug product ”delivers clinical performance per label

claims and does not introduce additional risks due to unexpected contaminants” [2]. Integration of these

two approaches is done considering that the clinical parameters that are crucial to good clinical perfor-

mance are derived from the quality attributes of the drug product or substance [3]. Generally speaking,

the well-defined quality attributes are a more reliable measure of drug quality since the control of these

parameters is tighter and more straightforward to perform than an evaluation of clinical performance [3].

Since the U.S. Food and Drug Administration (FDA) report publication Pharmaceutical Current Good

Manufacturing Practices for the 21st Century [4] on 2004, the industry´s approach to quality began to

change from Quality by Testing (QbT) to Quality by Design (QbD) [5, 6]. In the traditional paradigm,

quality is assured by a series of testing on raw materials and the final process output. Only when all

specifications are met can the product be released to the market or proceed to the next step on the

value chain (e.g. from chemical synthesis of the drug substance to formulation of the drug product)

[3, 5]. When all specifications are not met, the batch has to be reprocessed or can even be rejected,

leading to failure in meeting customer demand. It is estimated that, in the early two-thousands, 5 to

10% of the total batches produced in the industry needed reprocessing or were discarded [7]. The root

causes for such failures are usually not fully understood due to poor process understanding. Under this

standard, the manufacturers risk continuous losses until the root causes are identified and resolved or

the criteria for batch approval are widen consequently promoting poor drug safety [3, 5]. The inflexibility

of the manufacturing process [3] and extensive testing is what ensures drug product quality on the
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described paradigm halting innovation on an industry that constantly needs to revamp itself.

Contrary to this traditional notion, comes the approach developed and coined by the quality pioneer,

Dr. Joseph Juran, Quality by Design (QbD). This systematic, scientific and holistic perspective assures

product quality on the design of the process thus eliminating the need for extensive testing on the final

product [3, 8, 9]. ICH Q8 defines QbD as ”a systematic approach to development that begins with

predefined objectives and emphasizes product and process understanding and process control, based

on sound science and quality risk management” [1]. With an emphasis on process understanding and

control, causes for variability can then be better identified and resolved thus increasing, in a consistent

manner, product quality. Based on this definition, one could infer that the QbD approach may seem

exclusive of process development [9] but that is not the case as process optimization comes in as critical

to ensure process robustness over time, i.e., that the process operates on a reliable way over a range of

inputs (materials and process parameters) [1, 10].

Another initiative pushed by regulatory agencies, deeply related to ensuring process robustness over

time [11, 12] is process analytical technology, PAT. As defined by ICH Q8 , PAT is ”a system for design-

ing, analyzing, and controlling manufacturing through timely measurements (i.e., during processing) of

critical quality and performance attributes of raw and in-process materials and processes with the goal

of ensuring final product quality” [1]. It deepens the understanding and control of the process which are

pillars of the QbD approach to quality, in order to develop and operate robust processes [10, 12].

The recent pursuit for quality in the pharmaceutical industry was combined with a quest for pro-

ductivity increase that translates into effective use of the company‘s resources. Lean and Six Sigma

have proven to succeed on the matter and although slower than other industries [13–15], began to gain

ground on the turn of the century in the top pharmaceutical companies [14, 15].

The successful integration of quality and productivity, based on a scientific understanding of man-

ufacturing processes, is, nowadays, on the top of the agenda of pharmaceutical companies [16, 17]

paving the way for operational excellence programs in an attempt to manage cost, quality and time while

at the same time focusing on customers needs [18, 19]. For some companies, the term OPEX may

simply mean isolated initiatives linked with cost reduction or with Lean and Six Sigma, for others it may

be a top-to-bottom cultural mindset with the engagement of every employee.

The need for a continuous improvement culture in the pharmaceutical industry, that relies on process

understanding [10], is evident based on the number of methodologies and programs that have been

launched and pushed by regulatory agencies and applied (or are still to be) since the beginning of the

21st century [20]. All these methodologies and programs have one ultimate and common objective: to

continuously enhance the quality of drug products that will eventually lead to an improvement in the

quality of human life. The tagline of Hovione, ”In it for life”, fits perfectly on this end goal of every

pharmaceutical company.
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1.2 Hovione

Hovione is a contract development and manufacturing organization, CDMO, that provides contract

manufacturing services and licensing opportunities for proprietary products. Hovione is also present in

the field of generic API products.

The company was founded in Portugal in 1959 by Ivan Villax and his wife, Dianne Villax, and two

more Hungarian refugees: Nicholas de Horthy and Andrew Onody. Initially operating on the basement

of Villax´s home in Lisbon, the company expanded and Hovione´s first industrial plant was built in 1969

at Sete Casas, Loures. At the time, being Japan the main market of Hovione´s products, Ivan Villax

decided to open an office in Hong Kong in 1979 and later, a site in Macau in 1986. In 2001, Hovione

opens a third manufacturing site in New Jersey, USA, reinforcing their global position. It was also during

the turn of the century that Hovione extended its services by offering advanced and innovative solutions

in the particle engineering field, becoming the leader in spray drying technology. In 2008 Hovione

acquires Pfizer´s API site in Cork, Ireland. Reaffirming the company´s global footprint, offices were

opened in Japan and India.

Figure 1.1: Hovione´s presence worldwide [21].

Today, Hovione employs 1,600 people worldwide and offers more than 590 m3 of manufacturing

capacity. The company owns more than 400 patents recognized worldwide and is the biggest employer

of Ph.D. workers in Portugal.

Its core values are excellence, rigor, innovation, quality, and a strong customer commitment. The

Sete Casas production department is divided into several areas according to the product´s destination

(if it is produced exclusively to a specific client or if it is a generic) and grouped by the chemical similarity

between molecules.
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1.3 Topic Overview

Ivan Villax´s research that led to the creation of Hovione was focused on two classes of active

pharmaceutical ingredients (API): tetracyclines and corticosteroids. The former class of molecules is

produced naturally on the adrenal gland (located above the kidneys) and has a direct impact on stress

and immune response, protein and carbohydrate metabolism, blood electrolyte levels, the regulation of

inflammation, and behavior [22]. Since their discovery, corticosteroids have been used in almost every

area of medicine and administered by nearly every route [23]. They are one of the most prescribed

classes of drugs worldwide with an estimated 10 billion dollars per year in sales [24].

Fluticasone propionate (figure 1.2, C25H31F3O5S) is a corticosteroid that can be administrated via

oral, nasal or topical route [25]. The route of administration depends on the condition to treat [25–27]:

• oral route (inhaled): to treat asthma and chronic obstructive pulmonary disease (COPD);

• nasal route: allergic and non-allergic rhinitis, nasal polyps, and allergies;

• topical route: eczema and dermatoses.

Figure 1.2: Fluticasone propionate chemical structure, C25H31F3O5S.

The compound was firstly patented by Glaxo in 1980 [28]. Nowadays Hovione holds the patent,

producing it on Sete Casas installations by means of a process developed in its R&D center. The

process can be divided into 5 steps, giving each an isolated intermediate as output.

Figure 1.3: Process overview displaying the several steps that lead to the final API product.

RM is the raw material that starts the production train. The steps leading to intermediary 4 are chemi-

cal steps (chemical transformation occurs) while the step leading to the final product (FP) is a purification

step and the step leading to MFP (micronized final product) is a size reduction step. Each chemical step

involves dissolving the respective intermediate product with a designated solvent, followed by reacting

with one or more reactants. At the end of each chemical reaction, the new intermediate is isolated either

by pH adjustment, cooling, antisolvent addition, solvent evaporation, or a combination of these proce-

dures, followed by a filtration, drying and packaging steps. The only difference to the purification step is
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the absence of reaction. The output, in order to accomplish a subsequent successful formulation of the

API, i.e., improved drug solubility thus increasing bioavailability [9, 29–31], goes through a particle size

reduction step on a jet-mill, leading to MFP.

The API (further referred to as FP) is produced by campaign on a multipurpose installation (also in-

tended for APIs of the corticosteroids family) spread across two adjacent buildings on the plant. General

metrics concerning the production of FP are given in table 1.1.

Table 1.1: Overview metrics for all the steps of the production process of FP on a time frame from 2018
to 2020. For average and expected yield, the standard deviation is also presented.

Process step
Scheduled
lead time

(days)

SRM
(kg)

Avg. yield (%w/w)
Expected yield

(%w/w)

Int 1 3.9 110 94 ± 0.6 92 ± 5
Int 2 10.8 102 102 ± 2.6 99 ± 8
Int 3 7.5 104 106 ± 2.2 107 ± 5
Int 4 5.1 112 103 ± 2.4 101 ± 10
FP 9.4 35 78 ± 15.6 70 ± 28

MFP 11.3 26 94 ± 2.9 95 ± 5

The yield of the production steps can be viewed as the throughput ratio. To better understand this

variable (%w/w), the following formula should be considered:

Y ield(%) =
Net weight obtained

Net weight loaded
× 100 (1.1)

The formula used for yield calculation does not consider the purity of the final substance obtained

nor the changes in molecular weight of the isolated intermediates or final product. As such, the ratio

obtained can be higher than 100%, which should not be considered abnormal.

The uncertainty in the expected yield is increased moving up on the production train and stopping

on the final API before size reduction (table 1.1). This increase is roughly accompanied by an increase

in the standard deviation of the average obtained yield since 2018. High variability in the yield obtained

ultimately leads to ineffective use of the production resources (equipment, personnel, utilities, etc) and

so, in accordance with the production team, this was the primary problem to target. An in-depth analysis

of this problem statement will be done in section3.1.

The work methodology followed a backwards approach, as illustrated in figure 1.4.
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Figure 1.4: Work methodology followed on this thesis. The identification of the steps as step Z or step Y
is only indicative that these are the final steps of the overall API production process and will not be used
in this thesis.

The problem is identified on the process output and the cause(s) for the problem are searched firstly

on the process that leads to the output. It is important to mention that for the present work, the process

output was considered to be FP and not MFP. The step leading to the latter is just a size reduction step

that does not involve any chemical operation. Losses of yield do happen due to particle deposition in the

equipment chamber. According to table 1.1, these losses can be up to 10% and although not negligible

they were not considered.

If the variability is explained by the conditions in which the last step runs, the cause for the problem

is identified and improvement actions can be drawn from the analysis. If the cause for variability is not

totally identified in the last step, then the input to this step must be analysed and so forth. In order to

have concrete improvement measures, in the case that a certain attribute (or a set of attributes) on a

raw material for a step explain the greatest part of the variability, the step leading to the production of

that intermediate must also be analysed to uncover what causes that critical attribute.

In this way, the causes for variability on the output parameter will be spotted, improvement actions

will be launched and tested. Process understanding will be further developed that leads, due to the

implemented improvement actions, to an increase in process robustness.

1.4 Objectives

Inserted in the site´s continuous improvement plan, which ultimately aims at a throughput increase,

this project will lead to the development of process understanding on a generic API product. Through

a clear definition of the problem to be solved (yield optimization), process mapping and data collection,

statistical analysis of the historical data, and the suggestion of improvements, the project will follow the

DMAIC cycle as part of the Six Sigma approach to process improvement and problem-solving, that will

be explained in detail further on.

The expected outcome is the establishment of improvement actions with a view to yield optimization

drawn from an increased process knowledge (that should be transmitted to the production team) and the

creation of sustainment tools in order to maintain and preserve what was uncovered during the project.
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Chapter 2

Background

2.1 Six Sigma Origins

Ideas are never born out of the void. New ways of doing things arise from a set of events and condi-

tions that enable change. Six Sigma origin was no different. By the early 1980s, Motorola faced serious

issues related to poor product quality that was leading to a decrease in market share and the inability of

staying on top of Japanese competitors [32, 33]. Bill Smith, a Motorola engineer at the time, was study-

ing the correlation between a product performance indicator and the variability and rework percentage

on the respective process concluding that processes with high variability and rework rate often led to

higher failure in the field [33]. Dr. Mikel Harry was responsible to help Bill Smith formulate a tangible and

applicable approach that could be used within the company to achieve near quality perfection through

variability elimination [33, 34] and so, Six Sigma was born.

With the extreme support of the then chairman of the company, Bob Galvin, Six Sigma helped the

company achieve enormous improvements that resulted on (between 1987 and 1997): five-fold increase

in sales with profits going up 20% every year; $14 billion on savings in Six Sigma projects and a stock

price increase with a 21.3% rate every year [35]. After Motorola´s extreme success, Six Sigma began

to be applied by other top companies such as General Electric and Allied Signal (known as Honeywell)

followed by an immense wave of adherence (in the early 2000s): Ford, Dupont, Dow Chemical, Johnson

& Johnson, Kodak, Sony, Toshiba and many more [35].

2.2 Six Sigma System

The term ”Six Sigma” originated from the very core of the philosophy itself: reduce variability to

improve quality. Assuming that a random process variable (X) follows a normal distribution with a

designated mean, µ, and standard deviation, σ, then X ∼ N (µ, σ2). The probability density function is

given by the following equation:

f(x) =
1

σ
√
2π

e−
1
2 (

x−µ
σ ) (2.1)
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Graphically this mathematical relation can be represented as follows in figure 2.1.

Figure 2.1: Normal distribution curve with a mean µ and standard deviation σ, exhibiting the percentage
of area that lies within the ±σ intervals from the mean [32].

The percentage of data that lies within µ ± 6σ is 99.9999998%. If the lower and upper specification

limits for a certain process or product parameter (LSL and USL) are located at ±6σ from the mean,

then the proportion of defectives, i.e. the proportion falling outside the specification limits, would be

0.002 ppm. Allowing for a 1.5σ shift on the mean, one would get 3.4 ppm defectives (99,9996% within

specification) [32]. This is the metric that the pioneers of Six Sigma at Motorola set out to achieve on all

of their processes reflecting the goal of near perfection in terms of quality [32].

Under these circumstances, a process that (always allowing for a 1.5σ shift on the mean) produces

3.4 ppm defectives is said to have a 6σ capability. For example, if a process has its specification lim-

its located at ±3σ from the mean, then it will produce 66,800 ppm defectives: decreasing the sigma

capability of the process increases the proportion of defectives as shown in table 2.1.
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Table 2.1: Process sigma capability and proportion of defectives in ppm (proportion that falls outside the
specification limits of the process) [32].

Sigma Capability Proportion Defectives (ppm)

1 697,700

2 308,700

3 66,800

4 6,200

5 230

6 3.4

The traditional view of quality stated that if certain output attribute falls within the previously estab-

lished specification limits there is no loss in terms of quality. Contrary to this approach, the Taguchi

loss function, developed by the Japanese engineer Genichi Taguchi in the 1950s [36], states that every

deviation from the target value for the attribute has a loss in the value of the product and so, a function

was developed to quantify the loss as proportionate to the deviation [37].

Figure 2.2: Traditional view and the Taguchi view on quality [38].

Taguchi loss function is credited for the increase in continuous improvement projects throughout the

world and therefore, one of the foundations of the Six Sigma system[36]: reduce variation to achieve

quality perfection.

2.3 Six Sigma Philosophy

Six Sigma is more than a statistical concept, used to measure the performance of products or pro-

cesses against customer requirements in order to ensure quality perfection. Six Sigma can be seen

as ”a comprehensive and flexible system for achieving, sustaining and maximizing business success”

[35]. To accomplish business excellence, Six Sigma seeks to achieve this by carefully understanding

customer expectations, use of facts through data collection and statistical analysis, and improving pro-

cesses based on facts and data [32]. Business success is a broad concept and can be materialized

in many fields such as cost reduction; productivity improvement; market share increase; cycle time re-

duction; defect reduction; corporate cultural change and many more [32, 35]. Six Sigma is more of a

management philosophy, that translates into a cultural belief within a company than just a set of statisti-
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cal tools. However, these tools are the foundation of the system and are what provide the reasoning for

managerial decisions.

2.4 DMAIC Cycle

Every process can be defined, measured, analysed, improved, and controlled (DMAIC). Six Sigma

views all work as processes and so, all work can be defined, measured, analysed, improved, and con-

trolled [39]. This sequence of actions is at the very basis of Six Sigma, the DMAIC improvement cycle

or problem-solving strategy. Underlined in this problem-solving strategy is the simple equation [35, 40]:

Y (CTx) = f(X − influencers) (2.2)

Measurable parameters have to be defined on the process output that can quantitatively describe

the problem - these are the critical-to-x (CTx) variables of the project. Here the term ”x” means any area

that has an impact on the customer. Some examples of areas that are often subject to problem-solving

projects are: quality (CTQ); cost (CTC); delivery (CTD); safety (CTS) [39]. These response parameters

are determined by a set of variables, the X-influencers. If these influencing variables (X-influencers) are

controlled, then the process outputs parameters are controlled as well.

2.4.1 Define Phase

A problem is measured on the output and can be defined as ”an undesirable situation which may

be solvable by some agent although probably with some difficulty” [41]. The first step of the DMAIC

problem-solving cycle fundamentally aims to answer the two following questions:

1. What is the problem?

2. How big is the problem?

Together with the strategic goals, these two questions form the project statement that should help

the project team focus on the core issues and establish a common starting point [39].

The mathematical translation of the problem statement is to be made during this initial stage of the

process: a CTx variable (or more than one) has to be identified on the process output that significantly

describes the problem. This will be the response or ”Y” variable throughout the whole project. A basic

and very high level of the process flow can also be drawn on this initial phase of the process improvement

project.

2.4.2 Measure Phase

The second phase of the DMAIC cycle deals mainly with in-depth process mapping and data collec-

tion.

Process mapping can start at a high level, with an IPO (input-process-output) diagram. This diagram

lists the principal unit operations of the process as well as their respective inputs and outputs. It is
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a suitable tool to brainstorm all the variables (the X-influencers) that can negatively or positively have

an impact on the response variables (Ctx). Applied to chemical processes, the Process Flow Diagram

(PFD) can be drawn on this phase of the project.

The data to be analysed in the subsequent phase is collected in the current stage. Batch processes

originate data that can be arranged as a 3-way data table as illustrated in figure 2.3.

Figure 2.3: Three-way batch process data table.

For chemical synthesis processes in the pharmaceutical industry, i.e., batch processes, two cate-

gories of data can be defined: process photograph and process film. The process photograph data is

represented by the front face of the cube (figure 2.3) where to each completed batch a single value of

a certain variable is attributed. These variables are for example: duration of operations; flow rates and

agitator and jacket set-points. Process photograph data does not give a complete picture of the batch

since it only displays a shot of the process and therefore cannot be considered for robust improvement

actions derived from the analysis.

Figure 2.4: Three-way batch process data table showcasing the third dimension that is given with time.
For process film data, each completed batch is represented by a horizontal slice on the cube (figure 2.3).

The process film data gives a more complete overview of the process. It consists, for every batch, of

the data time points of variables such as temperature, pressure, speed of the agitator, and pH among

many more. It is important to mention that the statistical tools used to analyse process photograph data

are the same as the ones used to analyse this type of data set, the only difference being the arrangement

of the data, as will be explained further.

Under this phase of the project, a Measurement System Analysis (MSA) can also be performed in

order to ensure that the measuring instruments are adequate and measure the process parameters

truthfully, i.e., with accuracy and precision [32, 40]. Accuracy (as opposed to bias) is measured by the

11



difference between the average of the readings and the true value of the measurement and precision

(as opposed to variability) is measured by the standard deviation of the readings. Two other measuring

properties can be drawn from the ones previously stated: linearity which relates to the change of bias

over a range of values and stability that is linked to how the precision remains constant with time [32].

These are the parameters to be considered when performing an MSA to a measuring instrument, usually

before the measures are taken.

2.4.3 Analyse Phase

During the Analyse phase, the data collected during Measure is statistically analysed. It is during this

phase that process understanding is consolidated: the X-influencers that mostly impact the identified Y

parameters are signaled and through correlation analysis it is understood how does the variation in X

influences the behavior of Y.

Variability on the output of a chemical process (throughput and quality) can derive from the variation

on the conditions in which the process is running, variation on the input quality data, or operational

variability inherent to processes not fully automatized. To fully understand a process is to identify all the

critical sources of variability that can have an undesired impact on the attributes of the output [10]. The

relationships between the input material data and the process variables with the final product quality

data or the yield of the process are to be understood during this phase of the DMAIC cycle.

2.4.3.1 Multivariate Data Analysis

In the beginning of the past century, process engineers were lucky enough to get a few measures of

their processes as well as input and output data. Nowadays, the paradigm has changed. It is estimated

that the large pharmaceutical company has around 6 PB (6 thousand TB or 6 million GB) of data stored

[6]. Accompanied by this explosion of data being collected during manufacturing, comes the notion

that pharmaceutical processes are complex and problems that can arise during either development or

manufacturing are often explained by a wide set of variables. In order to fully understand these systems,

a new set of statistical analysis tools had to be brought up [10].

Multivariate data analysis (MVDA) tools derive from Chemometrics. Chemometrics is a field of Chem-

istry ”that uses statistical and mathematical models to design or select optimal measurement procedures

and experiments, and provide maximum chemical information of the studied process with the analysis

of collected data” [42]. Furthermore, MVDA as an integrated tool of Chemometrics is recognized in ICH

Q11 [43] guideline as a crucial mechanism for process development and optimization [9]. The discipline

has its focus on the following areas [10]:

• exploratory analysis;

• pattern recognition;

• classification and/or discrimination analysis;

• multivariate calibration;
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• process modelling;

• monitoring and control.

Of the following applications of Chemometrics and MVDA, only exploratory analysis, pattern recog-

nition, and process modeling were employed in the present process improvement project.

Software Used

Before entering into a detailed explanation of the algorithms, data arrangement, and statistical mod-

els used during the Analyse phase, a brief section is dedicated to the software used.

In a first instance, Minitab was utilized. Minitab is a statistical program that focuses, in a broad sense,

on data analysis and statistical process improvement being a very common program to be used in Six

Sigma and Lean initiatives. However, the need for a more incisive and applied, to the pharmaceutical

industry and to MVDA, software was manifested early on during the project and so, SIMCA started to be

used for the more advanced MVDA algorithms and data arrangements. SIMCA is a bio-pharmaceutical

MVDA software with the main goal of creating value out of big data and focused on process monitoring

and process optimization always with the premise of increased process understanding.

For univariate characterization and some early data displaying Minitab was used, but for the most

part of multivariate modeling SIMCA was the chosen software.

Preprocessing Methods

Raw data usually comes with noise, missing values, and unwanted variation. In this way, data pre-

processing, as the first step in data analysis, is necessary in order to bring forth the true and chemically

relevant underlying information [44, 45]. However, if not performed accordingly, data preprocessing can

induce unwanted variation and so, proper preprocessing is crucial to a good analysis outcome [45].

Several types of data preprocessing are available in the software used tor MVDA.

Table 2.2: Types of preprocessing methods considered for the project [46]. x̃ij represents the data
point after preprocessing; xij represents the data point before preprocessing; xi represents the average
value of the variable being considered and si represents the standard deviation of the variable being
considered.

Method Formula

Centering x̃ij = xij − xi

Unit-Variance (UV) Scaling x̃ij =
xij − xi

si

Pareto Scaling x̃ij =
xij − xi√

si

Centering is usually applied together with other preprocessing methods [46]. However, it can be

useful when all variables to be analysed are of the same kind (and so have a similar scale) [47].

Unit-variance scaling (UV scaling) is a very common method [45] which, after centering, divides the

data value by the variable´s standard deviation. This method is particularly useful when the variables
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are not of the same kind and therefore are not comparable [47]. This method results in the expansion of

small values, such as noise values, that may lead to an increase in the influence of measurement errors

that are usually relatively large for small values [45].

Another scaling method, Pareto scaling, consists in dividing the centered value by the square root of

the variable standard deviation. It is placed in between the two extremes of UV scaling and no scaling

at all [47].

For the analysis performed during the project, UV scaling was always chosen as the preprocessing

method. The models will consider different types of variables, with different scales (pressure, tempera-

ture, operations duration, agitator speed), and so, UV scaling was deemed as the best choice.

Principal Components Analysis

Principal Components Analysis (PCA) is a mathematical procedure that transforms a large set of

variables, that may be correlated or not, into a lower-dimensional set of new variables designated as

principal components [10]. These principal components are extracted from the data set according to

the directions of greatest variability: the first principal component (PC1) will explain the greatest amount

of variability, the second principal component (PC2, which is orthogonal and therefore uncorrelated to

PC1) will follow the first and so forth.

Figure 2.5: Extraction of two principal components (PC1 and PC2) from an arbitrary data set with three
variables (x1, x2, x3) showcasing the directions of most variability in the data set [47].

There are several criteria to choose the ideal number of principal components for a PCA analysis.

Two undesired situations can occur: under-fitting and over-fitting.
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Figure 2.6: Model error (in blue) and validation error (in red) with the increase in model complexity
represented in the x-axis [48].

Looking closely at figure 2.6, it is notorious that the validation error is always bigger than the model

error. There is a certain point in model complexity where the validation error starts to increase with the

increase in model complexity and from this point on there is a situation of overfitting: the model performs

well on the training set (the data set in which the model was built) but performs poorly with the test set

(validation data set) [48]. This leads to inaccurate predictions by including too many components that

describe random error and noise [10, 48]. Before the inflection point in the validation error curve, the

situation is called under-fitting.

For PCA models, one of the most common rules is to include all the PCs that have an eigenvalue

higher than 1 [49]. The characteristic eigenvalue of a PC is a quantitative measure of how good does

the component summarizes the data and is used in most cases as the rule to select the ideal number of

PCs.

This type of analysis fits in the first group of Chemometrics applications: exploratory analysis. It is

mostly used as an initial approach to large and complex data sets providing an initial overview of the

data (e.g. identify clusters, outliers, and deviating patterns) [10].

The PCA analysis yields two important outputs, the scores, and loadings of the data set. The scores

give information about the similarity between observations and are usually represented in a bi-plot of

two PCs (for example PC2 Vs. PC1) [50]. The loadings are usually also represented on a bi-plot of two

PCs but, contrary to the scores, give information about the relationship between the original variables

[50]. The scores and loadings bi-plots can be used together to figure out, for example, which original

variables are contributing more for a specific pattern on the observations.

In figure 2.7, the scores plot and the loadings plot for a training exercise, adapted from [47] are

shown. The dataset contains the consumption indexes of certain food products (the variables) among

the European countries (the observation or samples).
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Figure 2.7: Scores plot (above) and loadings plot (below) for PC1 and PC2 for the consumption of some
provisions on European countries. Adapted from [47].

A PCA model was adjusted with 3 PC´s: the R2 for each component, i.e., the variance explained

by each component, was for the first 31.7%, for the second 19.2%, and for the third, 13.8%, yielding a

cumulative variance explained of 64.8%.

Looking at the scores plot, it is visible that all the observations fall inside Hotelling´s T2 ellipse, which

is equivalent to the 95% confidence interval for univariate analysis. This statistical test provides the

distance from the observation to the center of the model and can be used to detect deviating obser-

vations: observations that fall outside this ellipse can be considered outliers and therefore can have a

large influence on the model obtained [10]. Three groups of countries can be seen: the southern Eu-

ropean countries in the left-hand region of the plot, the Scandinavian countries on the top-right region,

and the central European countries in the lower-center region of the plot indicating that each country in

the group has similar consumption patterns than the others in that group (southern, central and Scandi-

navian countries) and that the groups have different consumption patterns among themselves. Turning

over to the loadings plot, the relationship between the variables can be drawn. Garlic and olive oil are

shown very far apart from all the other variables indicating a discriminating group of variables (variables

that discriminate the observations). Analysing both graphs at the same time, some conclusions can

be drawn: firstly, that olive oil and garlic are mostly consumed in the Mediterranean countries and that

these are the variables that differentiate these countries from the rest. Crispbread and frozen fish differ-

entiate the Scandinavian countries while the central European countries can be differentiated with high

consumption of instant coffee and powder soup (Pa Soup).
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Figure 2.8: DModX parameter or residuals to the observations considered. Adapted from [47].

Another important parameter that is depicted in figure 2.8 is the residuals (or DModX parameter).

The residuals represent the unexplained variation in the model [10, 47]. A critical value for the residuals

is also plotted and observations that fall outside this value can be coined as outliers [47]. For the example

being considered, no observation had residuals above the critical value.

Partial Least Squares

After obtaining an overview of the data set with PCA (exploratory analysis), the need for a more

incisive and applied algorithm arises: to model the relationship between a given set of independent

variables X and one or more dependent variables or responses Y.

Simply put, Partial Least Squares (PLS) is an extension of PCA but, instead of looking at the di-

rections of greatest variability on the whole data set, it extracts the components in the X data set that

explain the most variability in the Y data set [9, 42, 51].

Figure 2.9: Scheme of the data set configuration in PCA (to the left) and PLS (to the right).

The new latent variables extracted from the data set have the same mathematical proprieties as

the PCs in PCA modeling, hence, the output of a PLS analysis, although different in its content due

to the differences in the algorithm, are also the scores and loadings. One additional useful output of

a PLS analysis is the scaled regression coefficients, which give the relative importance of the original

variables to the response variable in question [10]. Very negative coefficients indicate that a variable

has a more negative effect on the response variable than less negative coefficients and the same for

positive coefficients.
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In order to evaluate the model’s predictive ability, two important indicators can be used. The first one

is Q2 which indicates how well the model predicts the responses for a new data set [10]. This value

is always lower than R2. Another way of evaluating a model´s predictive capacity is to plot the actual

values for the response variable in the Y-axis (observed) versus the values predicted by the model on

the X-axis. A line with a slope of 1 and a y-intercept of 0 is the target for a good model [52] where the

predicted values are the same as the observed one.

The ideal number of latent variables is chosen based on the best predictive ability of the model, the

highest Q2 value which is computed through cross-validation [47, 53]: some rows of the data set are

kept out of the model and predicted by the model then to be compered with the actual values. This is

done until all rows have been excluded from the model [47].

Batch Modelling

As stated before, batch processes give rise to a 3D data table where the variation of the variables

over time is given for each completed batch (figure 2.4). The same methodology can be applied: firstly,

exploratory analysis is conducted in order to detect deviating tendencies or outliers and to get an initial

overview of the data (this type of modeling is called Batch Evolution Model, BEM); secondly, the evolution

of the variables, the X data table, is modeled against the response variables, the Y data table (this type

of modeling is called Batch Level Model, BLM).

Under exploratory analysis, a regular batch control chart can be done to one variable at a time,

displaying the evolution of the variable in the analysed batches. The problem arises when a lot of

variables are to be seen simultaneously in order to establish a good batch trajectory. The arrangement

of the 3D process data table is done as showed in figure 2.10 and is called observation-wise unfolding

[6]: batch (B1, B2, Bn) data is vertically stacked.
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Figure 2.10: Scheme of data layout for a Batch Evolution Model (BEM). Maturity is used to give the model
a direction and is a variable that is very descriptive of batch evolution (it is usually the time at which the
samples are drawn). This deconstruction method of the 3D process data table is called observation-wise
unfolding.

This condensation of all the information is done by plotting a batch trajectory through the scores of

a PLS model - the Batch Evolution Model (BEM). As stated earlier in this section the aim of this model

is to detect anomalies in the process trajectory and investigate which are the variables responsible for

those deviations on the overall process trajectory. An initial overview of the way the batches are being

run is also given. Below is an example of a well-controlled process, displaying a similar scores evolution

for all analysed batches.

Figure 2.11: Scores control chart for a crystallization step during the FP process showcasing that all
analysed batches have a similar batch trajectory to each other. Control charts will be discussed in more
detail in section 2.4.5.
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The challenge arises when a relationship has to be drawn between the 3D process data table and

the 2D data table that is representative of the final parameter measured upon batch completion. This

challenge is demonstrated on figure 2.12.

Figure 2.12: 3D process data table and 2D final conditions data table.

As was the case for PCA and PLS, after obtaining an overall look at how the batches are running

by comparing their batch trajectories, a more precise and incisive approach is needed. For successful

modeling, the deconstruction of the 3D process data table to a 2D matrix has to be made differently

than it was done for BEM. As shown in figure 2.13, the variable profiles for each batch are horizontally

stacked on the same line which corresponds to a single batch. This rearrangement is called batch-wise

unfolding [6].

Figure 2.13: Process data table deconstruction for BLM termed batch-wise unfolding.

A PLS model is created between the unfolded process data table and the final conditions data table

providing an effective and robust method to tune any sections of the process in order to optimize the Y

parameter(s) by carefully understanding which are the variables and time sections that have the greatest

impact on the final parameter. This study is carried out by an analysis of the loadings of such models

[6].
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Figure 2.14: Loadings of the first component given against batch maturity, colored by variable (pressure
as blue, temperature as yellow, and agitation as red), for a crystallization step during the FP process.

In figure 2.14 the loadings of the first component for a crystallization step are presented against

batch maturity for each variable. For example, the blue line represents, throughout the entire operation

being analysed, the contribution of that variable to the response variable (displayed in green on the left

part of the plot), in a similar way to the PLS model coefficients. The loadings are colored by variable

so it is easier to differentiate the contributions of the analysed parameters. For temperature (yellow

variable), although on some sections more than others, higher temperatures give higher yields, because

the loadings for this variable are always positive and of the same order of magnitude as the loading of

the Y variable. These graphs present themselves as a strong and robust basis for concrete improvement

actions with a focus on the way the process is being run.

As previously stated, variability in a process output can be explained by the input quality attributes or

in the way the process is running. In the case that the quality attributes of the raw materials explain most

part of the variability on the process output variable, it is still necessary to analyse the step that leads to

the formation of the raw materials in order to either minimize or maximize those critical quality attributes

that have an impact on the final Y. In this way, the study of the loadings through BLM is of extreme

importance and is what can give a more solid foundation for a successful resolution of the problem to be

solved.

2.4.4 Improve Phase

The goal of the fourth phase of the DMAIC cycle can be divided into three consecutive parts.

The first one is to successfully materialize the results of the statistical analysis conducted on the

previous phase into tangible, concrete, and feasible actions for problem resolution and process improve-

ment.

Secondly, is idea prioritization. Usually, the effort to implement the actions that come out of the

Analyse phase surpasses the time or resources available to implement them and so, prioritization is

imperative [54]. This action prioritization can be done by placing them on an Impact Vs. Effort matrix as

shown in figure 2.15.
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Figure 2.15: Impact Vs. Effort matrix template displaying the 4 categories of actions.

The actions are placed on the quadrants according to their impact and effort classification. The

impact categorization can be performed using a set of statistical indicators that reflect the strength of

the model: R2 and Q2 as already mentioned. The effort classification is done empirically with the aid of

the process experts.

Actions placed on the first quadrant of the matrix have a high impact but also require high effort.

Only a small number of actions should be placed in this category. The second quadrant covers actions

that have high impact and require a low effort for completion and are coined ”quick wins”. These are

the actions to focus on. Actions with low impact and low effort are placed on the third quadrant. These

actions are only to be considered when there is a surplus of time and resources. Finally, on the fourth

quadrant, the actions with high effort and low impact are placed and are usually actions that are not

worth completing.

Still under the second objective of the Improve phase, an action plan with feasible timelines and

accountable people for each task is drawn and is to be used in the third objective of the Improve phase:

action plan implementation. Only on this stage is the process actually improved and the status quo is

changed into a revamped version of the process.

2.4.5 Control Phase

Dr. Walter Shewhart, working in the early 20´s, was the pioneer of a set of tools that aimed at

statistical quality control on mass production [32]. According to him, variability on a process variable or

in an output attribute is due to the following two causes [32, 39]:

• common or chance causes: these are inherent to the processes and usually are not controlled

though can be classified as unavoidable;

• special or assignable causes: these arise from a specific occurrence that the operator when ade-

quately alerted can remove or minimize the impact.
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The control charts (figure 2.16) arose in order to differentiate between these two causes of variation.

Two undesirable situations can occur when this differentiation is not performed: when trying to eliminate

common cause variation the result ends up being more variation instead of less and if special cause

variation is not spotted and the effort is not put to eliminate it the outcome is usually an exponential

growth of variation [39].

Figure 2.16: Control chart for a random variable over some production batches. The 3σ limits are
outlined as red and the mean for the process variable as green.

Dr. Shewhart established the differentiating criterion as plus and minus 3σ from the variable mean

[32, 39, 55]. If an observation falls outside these control limits (upper control limit, UCL and lower control

limit, LCL), the process can be coined as out of control and so, probably, one or more special causes

have occurred and actions must be taken in order to discover and eliminate them [32, 55].

The control chart presented in figure 2.16 addresses process photograph type of data, where for

each complete batch the variable takes just one value. Control charts for process film type of data can

also be established like the one presented in figure 2.11 (although not regarding the actual values for a

process variable but rather the scores for a PLS model).

Maintaining the improvements achieved is also a part of this final phase of the DMAIC cycle. A

rigorous process of documentation of the lessons learned during the entire project should be performed

and a clear identification of how the improvements can be replicated and applied to other processes

[39]. An often-used practical way for the improvements sustain is the development of training materials

in order to ensure continued support for the people involved with the process on a daily basis.

2.5 The Pharmaceutical Industry and Six Sigma

As previously stated, Six Sigma has proven to succeed in many industries with countless tangible and

measurable benefits [35]. However, the pharmaceutical industry has been reluctant or at least slower to

apply Six Sigma tools to their business processes [13, 14, 20].

Drug recalls have shown alarming trends over the last few years [20], as seen on figure 2.17, re-

minding, the pharmaceutical industry of the long way to achieve quality excellence, which is critical to

attain since the customers of the industry are patients that rely on the industry to alleviate their condition.
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The 6σ capability can be considered the future of drug quality [20] that is translated into 3.4 defectives

per million opportunities [20, 40]. An enormous improvement will have to take place since currently the

pharmaceutical industry´s sigma capability is around 3σ [20].

Figure 2.17: Number of FDA drug product recalls on the last 3 completed years [56]. For 2017, data
was unavailable for the first 8 months of the year. A direct proportionality ratio was conducted as an
approximation to the overall drug recalls on that year.

A fundamental mindset to achieve quality excellence (the Six Sigma target) is continuous improve-

ment that can be carried off through many corporate programs. Presented below is an example of ap-

plication and the measured improvements on a top pharmaceutical company, showcasing that, although

there is still a long path ahead, the effort is being put in place and the incremented improvements are

being achieved.

Taking part in this strive to achieve quality excellence, the discipline of Chemometrics has been

established as a tool to be used in every step of product development and manufacturing by enabling

process understanding thus increasing process robustness that eventually leads to an increase in quality

[10]. Some examples are also presented of how top pharmaceutical companies progressively adopting

MVDA as an integrated tool on their process improvement projects.

2.5.1 Pfizer´s Right First Time

Pfizer is one of the top research-based pharmaceutical companies worldwide. Pfizer Global Supply

(from now referred to as PGS), a Pfizer subsidiary, ensures manufacturing operations and supply net-

work, making sure that products are produced to the highest standards of quality, safety, and efficacy,

and are available when and where needed [19].

As an industry leader, PGS has been at the vanguard of a decade-long, industry-wide movement

to drive performance by fostering a continuous improvement culture throughout the organization. It

all started in 2003 with the Right First Time program that aimed to ensure high-quality products while
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at the same time reducing costs [19]. Their primary target, in order to achieve the initial goal of the

program, was to aim at systematically uncovering root causes for unwanted and uncontrolled variations

in manufacturing processes [19]. As for the side-effects of this main target, the following can be listed:

improved effectiveness and efficacy with the elimination of non-value-added activities, gained process

understanding, and increased process robustness. Processes that were consistently recording a 2 to 3

σ capability began to perform at a 4 to 5 σ capability [19] with the result being a more reliable process

in terms of yield, output quality, and process speed. The increased predictability of their manufacturing

processes also enabled an inventory level decrease. By 2008, Lean initiatives were incorporated into

PGS Right the First Time strategy providing enhanced opportunities for lead time optimization, increased

efficiency, and reduced inventory.

Pfizer soon understood that sustaining the initial momentum gained with successful initiatives was

critical [19]. The company leadership noted that the early phases of Right First Time and Lean initiatives

had to be integrated into a full system and top to bottom approach in order to keep the good results in a

rapidly evolving pharma environment. This full system approach would eventually lead to [19]:

• Company-wide focus on value-adding activities instead of single point process improvements;

• Coordinated approach to cost and capabilities instead of increased process robustness;

• Organization transformation and full cost reduction instead of improved product quality and in-

creased manufacturing productivity.

In order to support the transformation process, a common set of principles and metrics were needed

to align change at every level of the organization. The Network Performance Principles (NPP´s) emerged

as a common basis to orient the efforts to make Pfizer best in class [19]. This set of principles describes

the vision of a best in class company (in an ideal state) by answering the following set of questions [19]:

• How operations and supply chains should operate in an ideal state;

• How elements within and across PGS will operate together;

• How balanced metrics drive high performance;

• How highly capable colleagues deliver operational performance.

To measure, qualitatively, the performance across Pfizer sites relative to this transformation process,

the Network Performance Assessment (NPA) was created. The NPA supported the assessment on

where the site is in the transformation process, which elements are progressing and which are not,

constituting these the areas that should be prioritized [19].

Transformation is a conscious and reliable transition to an upper state of business performance. The

business processes employed by Pfizer over the past two decades and its results clearly highlight that,

nowadays, a continuous improvement culture is what can foster the competitive advantage among top

pharmaceutical companies.
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2.5.2 MVDA Applications

Multivariate data analysis has turned into a reliable set of tools to ensure monitoring and process

optimization during manufacturing. Below are a few cases of the successful use of the toolkit and its

gains among some pharmaceutical companies.

In tablet manufacturing, variability in output quality is mostly explained by the variability of the inputted

raw materials [57]. In order to optimize the tableting process, a group of scientists in Pfizer built PLS

models that combined raw materials attributes and process variables with output quality features like

hardness, disintegration time, dissolution [10, 57]. Before a new batch, with specific raw material with

certain attributes, the models are used to find optimal process conditions in order to optimize the desired

final product features. This reduces the need for experimentation when a raw material with different

attributes is used in tablet manufacturing [10, 57].

In Novartis, multivariate statistical process control (MSPC) was used for process monitoring [58]. A

Batch Evolution Model (BEM) was built and new batches were compared in order to evaluate whether

the process trajectory falls into the expected ranges [10, 58]. Over the course of one year, the batches

produced did not fell out of the model ranges indicating the analysed process was in statistical control

[58].

A more holistic approach was taken by GSK to support the development of a continuous process for

the manufacture of Paracetamol tablets [10, 59]. The analysis occurred in two sequential steps. Firstly,

exploratory data analysis (PCA) was used in order to identify the critical process parameters and raw

material attributes. Then, regression analysis (PLS) was applied to relate final product quality with those

critical process parameters and raw material attributes [59].
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Chapter 3

Results

3.1 Define

The first phase of the problem-solving DMAIC cycle sets out the tone and the boundaries for the

entire project. Two crucial and structural questions are meant to be answered: what is the problem and

how big is it.

3.1.1 What is the problem?

According to table 1.1, the expected uncertainty on the yield of each step leading to any intermediary

in the API production train is increasing moving from the starting raw material to the final product. The

increase in the uncertainty of the predicted yield is accompanied by an actual increase in the standard

deviation of the obtained yields. High variability on any process output parameter can be translated into

a poorly controlled process and lack of robustness, where process robustness can be defined as the

lack of sensitivity of the process outputs to fluctuations in the process inputs and process variables [9].

Figure 3.1: Histogram of the yield of FP process from July 2018 to January 2021 with normal distribution
fitting.
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As seen in figure 3.1, ranging from July 2018 to January 2021 (40 batches were included in the anal-

ysis), high variability on the final step of the API production process is verified leading to the conclusion

that the process could be in tighter control. Univariate statistics for this variable are presented in table

3.1.

Table 3.1: Univariate statistics for the yield of FP production step.

µ 81.83

σ 2.22

CV (%) 2.71

Min 77.30

Max 86.30

R 9.00

RelativeRange (%) 11.00

Q1 80.20

Q2 81.91

Q3 83.48

The timeline trend of the variable being analysed can also be represented. It is important to mention

that only batches with the previous intermediary (intermediary 4) as the starting raw material were

included in the analysis, as there were some batches present in the time range (July of 2018 to January

2021) that were reprocessing batches. Reprocessing batches have more pure input materials and so,

since the FP production step is a purifying step, higher yields were observed that were not considered.

Figure 3.2: Run chart of the yield of FP production step from July 2018 to January 2021. The data points
are divided into production campaigns.

Up until batch 14, although with some deviations, a constant trend was observed. Starting from batch

15 a negative tendency is evident up until batch 27 and from that batch to batch 37 the trend reverses.

One could argue that the more recent trend is positive and therefore, no improvement project should

be put in place. However, the variability is clearly present: the reasons for such low yields on batches

22 to 28 and for such high yields on batches 33 and 37 should be identified and understood in order to
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prevent and replicate them respectively in a view to an optimized yield for FP process.

As previously stated, high variability on any output parameter can be translated into a poorly con-

trolled process. Applying this key idea to high variability on yield, one can infer that it can be translated

into poorly controlled throughput. A process in which the throughput is not predictable leads to an un-

known number of batches needed to satisfy a client´s order that is inevitably accompanied by biased

and uncertain production planning. High variability in yield also leads to ineffective use of the company´s

resources since the cost of equipment, personal, raw materials, and utilities do not change according to

the throughput. By standardizing and preferably optimizing the yield of the final step, the process ad-

vances to a state of tighter control, the throughput is increased and the company resources are used at a

higher utilization rate. As side (but desirable) effects of the success of the improvement project, process

understanding is gained and a culture of continuous improvement is fostered among the company.

3.1.2 How big is the problem?

With the first guiding question of the Define phase answered, the impact of the problem is to be

computed through the answer of the second guiding question: ”How big is the problem?”. In order to

correctly calculate the impact of the project, a holistic metric (preferably financial) has to be identified.

As stated in the previous section, high variability on yield causes biased and uncertain planning that

ultimately leads to missed opportunities in terms of throughput that can then be converted to missed

opportunities in terms of revenue considering an average price of the final product and that on average,

17 batches of FP are produced per year.

Figure 3.3: Box plot of the yield of FP process. The first, second, and third quartiles are showed as well
as the minimum and maximum values.

The calculation for the possible impact of the succeeded project was performed considering several

optimization scenarios: if all batches had a yield equal to Q2; if all batches had a yield equal to Q3 and

if all batches had a yield equal to the maximum ever achieved (during the timeline considered).

MO =

∞∑
n
(SP − Y ieldn)

n
(3.1)
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The calculation formula is expressed in equation 3.1, where SP designates the optimization set-point

considered (Q2, Q3 or maximum ever achieved) and MO the calculated missed opportunities.

Table 3.2: Averaged missed opportunities (MO) in terms of throughput and revenue on a batch and
yearly basis. The values are removed due to confidentiality reasons.

Optimization

Set-Point

Avg.

kg/batch

Avg.

k$/batch

Avg.

kg/year

Avg.

M$/year

Q2 – – – –

Q3 – – – –

Max – – – –

With the maximum ever achieved optimization set-point, the missed opportunities in terms of through-

put on a year basis represent, roughly, one FP production batch which is a tangible and considerable

amount of product being lost to yield variability.

Instead of just calculating the averaged missed opportunities for batches running at Q2, Q3, and

Max, the parameter was computed for a range of yield optimization set-points from Q2 to Max. Below

is the representation of the averaged missed opportunities in terms of revenues per year against the

yield optimization set-point.

Figure 3.4: Graphical representation between the averaged missed opportunities in terms of revenue
per year and the optimization set-point. A linear model (R2=99.15%) and a quadratic one (R2=99.97%)
were fitted.

Although with a very small difference in the values of R2, the quadratic model displays a better fit to

the data, showcasing that the missed opportunities in terms of revenue are exponentially dependent on

the yield optimization. Towards the higher end of the optimization set-point, the possible gains will be

higher than those of the lower end.
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3.2 Measure

During the second phase of the process improvement cycle, a better understanding of the problem

and of the process is done through process mapping. The IPO diagrams of each step of the production

train (figure 1.3) were drawn. These diagrams can be found in annex B.

Regarding data collection, both process photograph and process film types of data were collected.

The first category of data is usually present in databases filled by the process engineers and was kindly

provided. For the collection of the second data category, the automation system records of the site had

to be accessed. In the concerned production area the installations are not fully equipped with up-to-date

sensors that actually record in an automation system, making it possible only to collect data from a small

number of variables.

As stated before, a problem can be considered ”an undesirable situation which may be solvable by

some agent although probably with some difficulty” [41]. Problems are caused by the inputs or the

process variables and can be measured in a process output. As such, in order to control the desired

variable(s) on the process output, one must manipulate the input and/or the controlled process variables.

Total elimination of output variability will never be possible due to the contribution of uncontrolled factors,

such as equipment malfunctioning or failure, uncontrolled human-related issues, and inherent common-

cause variability [32, 39].

Figure 3.5: Scheme of a process (with just two operations, Op. A and Op. B) showcasing that the output
is a function of the inputs and process variables (controlled and uncontrolled).

During the Measure phase of the project, process understanding is gained. Probable critical process

variables and raw material attributes were listed and prioritized according to the discrete and empirical

scale presented in table 3.3. This variable prioritization was made with the production team in order to

increase process knowledge.
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Table 3.3: Variable and input attribute discrete and empirical classification method employed.

Classification Description

0 It is proved that there is no correlation with the response variable

1 Probably there is no correlation with the response variable but it is not proved so

3 Probably there is some correlation with the response variable

9 It is proved that there is a strong correlation with the response variable

The response variable (the Y variable) depends upon the production step being analysed. The yield

is the final and ultimate parameter to be standardized and optimized but, according to figure 1.4, the raw

material attributes can explain the problem. If that is the case, the production step leading to that material

should be also analysed, in order to figure out what is the cause for the identified critical attribute(s). In

this type of analysis, the response variable will no longer be yield but rather that critical attribute.

3.2.1 Process Description

The present project leaned over the analysis of FP and intermediary 4 production steps and so the

response variables that will be present in results regarding the Analyse phase will be the yield of FP step

and material attributes of intermediary 4. Only these two processes will now be subject to a detailed

description since they are the ones being analysed.

3.2.1.1 Intermediary 4

Section content changed due to confidentiality reasons.

Intermediary 3 is dissolved and two inorganic salts are added. A final and gaseous reactant is

added and reaction takes place. Multiple degasing steps take place in between the load of the several

reactants. Precipitation happens due to antisolvent addition and cooling. The suspension is then filtered

and dried.

3.2.1.2 FP

Section content changed due to confidentiality reasons.

Intermediary 4 is dissolved. Precipitation happens through solvent evaporation, antisolvent addition

and cooling. The suspension is then filtered and dried.

3.3 Analyse

This phase of the DMAIC cycle covers all the statistical analysis of the collected data. As stated

before, multivariate data analysis techniques were used as a more holistic, robust, and feasible ap-

proach to univariate statistics. From the areas of Chemometrics, only exploratory analysis (with pattern

recognition included) firstly and process modeling secondly were employed in the project.
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Figure 3.6: Scheme of the strategy followed during Analyse phase of the DMAIC cycle. Process photo-
graph and process film types of data refer to the content explained in section 2.4.2.

The results will be presented following the backwards approach (figure 1.4): starting on the last

production step and moving in reverse on the production train. For each production step, firstly process

photograph type of analysis for process variables and quality data of the raw materials and then process

film type of analysis to the operations that were coined as relevant in the process photograph analysis will

be performed and also following the strategy presented in figure 3.6, i.e., primarily exploratory analysis

followed by process modeling.

All the models that will be presented during the following section are termed black-box models or

statistical models. Within this framework, systems are only viewed in terms of their inputs (stimulus)

and outputs (responses), without any knowledge of their internal workings, and are built based only on

historical or experimental data [60].

Figure 3.7: Black-box model scheme.

Contrary to white-box models, or mechanistic models, which are entirely based on mathematically

expressed universal natural laws, black-box models only need the specification of the system´s inputs

and outputs and are particularly useful when the system is poorly understood [60] which is the case

for the chemical-pharmaceutical industry, where systems are often too complex and the simplifications

made to achieve a mechanistic model often compromise and surpass the advantages for this type of

modeling.
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3.3.1 FP process step analysis

Following the backwards approach methodology, illustrated in figure 1.4, the final step of the produc-

tion train will be analysed, both in terms of process photograph and process film type of data. For the

directed models (such as PLS and BLM) the response variable that will give the model its direction will

be the yield of this final production step since it is the primary problem to solve.

3.3.1.1 Quality

The yield on the final step (the response variable considered) was modeled against the quality data

of the starting raw material of the final step (intermediary 4). Two impurities of this intermediate were

removed from the analysis due to the fact that their values, over the considered production batches were

always much lower than the limit of quantification (LoQ). This value is characteristic of the measuring

instrument and is the lowest value to which measurements of the designated substance can be reliably

detected with some predefined minimums for bias and imprecision [61] and so, the values reported in

the release report of intermediary 4 were not meaningful and were left out. It is also important to mention

that, as seen in table 1.1, the size of intermediary 4 batches (SRM around 112 kg) is much higher than

the size of FP batches (SRM of 35 kg), and so, one batch of intermediary 4 is used in more than one

batch of FP. For batches of the latter that had more than one batch of intermediary 4 as SRM, in order to

figure out the final value for the designated impurities for the overall SRM, a simple mass balance was

performed. This technique was used for the analysis of quality data on all the production steps.

Firstly, PCA analysis was performed to the data set (exploratory analysis). Three principal compo-

nents were chosen to explain the most relevant part of the variability of the data set: PC1 explains 44%,

PC2 explains 23% and PC3 explains 19% of the variability which yields a cumulative percentage of 86%,

the rest is considered noise. Through the scores of the model, no deviating batches, or outliers were

detected neither were clusters. The loadings of the model are presented in the following figure.
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Figure 3.8: Scatter plot of the loadings for the PCA analysis of yield of FP production step and the quality
data of intermediary 4 (impurities and purity). On the top, the second component (PC2) is plotted against
the first component (PC1) and on the bottom, the third component (PC3) is plotted against the second
component (PC2). The variability explained by each component is shown at the bottom of each graph.

Firstly, it is important to mention that, as seen in the plot of PC1 Vs. PC2, purity of intermediary

4 is, almost perfectly, negatively correlated with impurity H. Variables with such a high correlation can

be termed inter-changeable variables, i.e., if purity is swapped with impurity H or vice-versa there is no

change in the problem or its solution. The variable to be excluded in the subsequent analysis was purity

as this variable is a mere difference between the totality and all the impurities and does not represent a

real substance being detected in the analytical methods.

Looking at both plots, the yield of FP step is strongly explained by PC1 and not well explained by

PC2 and PC3 since the projection of this variable on these components is close to zero (although higher

on PC3). Impurity H and impurity HAPOFM seem to be the two impurities that have a more negative

impact on yield according to PC1. Looking at PC3, impurity G can also be signaled as having a negative

impact on yield, and impurity HAPOFM with a positive impact. These contrary effects regarding impurity

HAPOFM will be explained in regression analysis.

Fitting a PLS model to the data and excluding purity from the variable set, the following model was

obtained.
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Table 3.4: PLS model statistics for the yield of FP as the response variable and the quality data of
intermediary 4 as independent variables.

R2 Q2

Comp. 1 0.800 0.744

Comp. 2 0.063 0.192

Cumulative 0.863 0.793

Considerable high values for both R2 and Q2 are shown in table 3.4 showcasing that the variability on

the yield of FP is almost completely explained by the variability on the quality data of the input material

for that production step. However, this fact does not exempt an analysis of the process variables.

The coefficients of the model are presented in figure 3.24.

Figure 3.9: PLS model coefficients for the several impurities present in the intermediary 4 quality data
against the yield of FP.

It is important to mention that in this type of analysis, the coefficients give the relative contribution of

the variables and not the actual contribution or regression coefficients. As such, these figures presented

are completely independent of the actual scale of values of each variable.

Some results are in the same line as the ones obtained with PCA analysis and some are not. This

is expectable as the way the two algorithms work is different, as already explained. Impurity H appears

to be the substance that has the most negative impact on the yield followed by impurity G and the water

content. Impurity HAPOFM, which had a high relevance on the loadings of PCA analysis has a small

contribution in PLS analysis together with impurity F17H. Impurity 6 chloro has a positive impact on

yield. This odd relation is explained in the fact that this substance is present in the production process

since the beginning, in the purchased material, and does not purge in any of the production steps.

36



3.3.1.2 Process photograph

The quality data of the input material explains most part of the variability in the yield of the final step.

However, this fact does not exempt a deep analysis of the process itself as the percentages of variability

explained are not additive and so, an also very high value for the way the process is being run can be

obtained. As such, process photograph type of data was analysed which consists of variables that have

a single value for each completed batch (duration of operations, flow rates, and quantities of reactants

used). This type of data, as explicit in the name, only gives a shot of the process, not the full unfolding of

the batch, and is used mainly to give some initial insights on the process and a starting point for process

film type of data.

Exploratory data analysis (PCA model) was performed to the data set and non-relevant variables

were excluded, in other words, variables that did not correlate at all with the response variable in ques-

tion. With the remaining factors, regression analysis (PLS model) was performed to the reduced data

set. Through a process of adding and removing variables from the analysis, the best model (with the

given data set) was constructed.

Table 3.5: PLS model statistics for the yield of FP as the response variable and the process photograph
type of variables for FP process step.

R2 Q2

Comp. 1 0.319 0.206

Cumulative 0.319 0.206

Although with a very low percentage of variability explained by the model, some conclusions can be

drawn that were roughly expected. The coefficients for the model are presented below, considering only

the relevant variables.
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Figure 3.10: PLS model coefficients for the process variables (process photograph type of data) against
the yield of FP. ”Dissol” is the time took for the complete dissolution of the input material; ”Nucleation”
is the time took for nucleation with solvent evaporation; ”3rd evapor” is the time took to evaporate the
remaining solvent after the API nucleation; ”Antisol ra” is the flow rate of antisolvent addition; ”Cooling”
is the time spent in the cooling of the suspension after solvent evaporation and antisolvent addition and
”1st wash” and ”2nd vacuum” are related with the filtration step.

The time spent on the nucleation is the variable that has the most negative impact on the yield. This

operation stops upon a visual inspection of the mixture by the operators. Assuming that there is no

intrinsic variability on this ending point from batch to batch and that the temperature profiles (meaning

the evaporation rate) are the same, more time needed to nucleate the suspension means more solvent

evaporated which in a broad way can be translated into higher solubility of the solid material in the

mixture. This higher solubility can cause incomplete nucleation (whether on the solvent evaporation

step or in the antisolvent and cooling steps) thus causing yield losses. A study on the temperature

profiles during solvent evaporation is to be performed.

Regarding the cooling step of the crystallization, one can see that more time spent on this operation

means higher yields. The cooling rate is specified and deep analysis on possible differences between

batches on this variable should be conducted since it is a critical value in cooling crystallization [62].

For the antisolvent rate of addition, higher values of this variable lead to lower yields. This is ex-

pectable as lower rates of addition favor nucleation contrary to higher rates that favor crystal growth

[62]. Since the amount of antisolvent loaded is specified in the batch production record and does not

vary from batch to batch, a more in-depth analysis was conducted on the antisolvent addition time. This

duration is specified as CONFIDENTIAL minutes in the operations manual but there were some batches

where it was not followed.
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Figure 3.11: Linear and quadratic regression of yield of the final step against the duration of antisolvent
addition on the batches that the indication for CONFIDENTIAL minutes of addition time was not followed.
For linear regression, R2 equals 0.573 and for quadratic regression R2 equals 0.652.

As seen in the graph of figure 3.11, the higher the time for addition (translated into a smaller addition

rate), the higher the yield. As stated before, this type of analysis is only enough to spark discussion and

deeper analysis, in this case, the level profile of the reactor during antisolvent addition.

For the remaining variables, no comments will be made as these operations (crystallization and

filtration) will be analysed at a deeper level with process film type of data.

3.3.1.3 Process film

For the more rigorous and incisive analysis of process film type of data, both the crystallization (and

all its successive steps) and the filtration will be the subject of study. As illustrated in figure 3.6, firstly,

exploratory data analysis and pattern recognition will be performed through BEM and then process

modeling through BLM, to figure if the differences spotted in the variable profiles from batch to batch do

in fact influence the response variable.

Batch Evolution Model

Since the considered production area is one of the oldest areas on the site, not a lot of variables are

actually recorded by the automation system. As such, there is actually no use in displaying the scores

on a batch control chart as this method is useful when a lot of variables are to be seen simultaneously

and so, for this particular case, the variable profiles can be analysed individually in each crystallization

step and during the filtration.

Under exploratory analysis the profiles for each variable were studied. For the solvent evaporation

part of the crystallization, the pressure profile has some fluctuations towards the end of the process in

roughly all analysed batches. This is due to minor fluctuations in the vacuum pressure applied. The tem-

perature is practically always constant in order to maintain a specific evaporation rate. For the antisolvent
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step, the pressure profile has some minor fluctuations also due to differences in the room pressure. Re-

garding the temperature profile the addition of antisolvent is accompanied by a temperature increase.

This is because the addition of the antisolvent increases the reflux temperature of the suspension and

so, in order to keep the solvent evaporation, the jacket temperature is increased. For the agitator speed

, there is the indication to stay at CONFIDENTIAL during the entire crystallization step. This indication is

roughly followed as there were some batches that the agitator speed was considerably different from the

stipulated. After the addition of antisolvent, the suspensions is cooled at a specified rate of about CON-

FIDENTIAL. The pressure profile is on the same line as in the evaporation and antisolvent steps. The

specified cooling rate is being followed. The agitator speed during this operation has some fluctuations.

Still, under exploratory data analysis and pattern recognition, the filtration variable profiles are also

worth commenting on. From an operational point of view, this is a difficult operation to control, which

is visible in the completely random pressure profile during this operation. For the agitator speed in the

filter dryer, random peaks appear. The presence of an agitator in the filtration process is crucial due

to the aid in mixing and the cake smoothing in case of crack formation. This last phenomenon can

cause channeling of the washing solvents which originates a non-effective filtration operation [9]. In the

temperature profile a decreasing trend is verified in all batches that are connected with the transfer of

the multiple washings at a low temperature.

Batch Level Model

The next step, and the one that actually gives a solid ground to establish any improvement actions,

is Batch Level Modelling, where the differences in between batches on the variable profiles are modeled

against the Y variable and the impact of such differences on the particular problem to be solved is

uncovered. A BLM model was established for each crystallization step and for the filtration as a whole.

Crystallization

Starting with the solvent evaporation step on the crystallization, the following model was obtained.

Table 3.6: BLM model statistics for the solvent evaporation step in FP crystallization and yield as the
response variable.

R2 Q2

Comp. 1 0.655 0.426

Comp. 2 0.057 0.051

Cumulative 0.712 0.455

The loadings for the first component during the solvent evaporation step are given in figure 3.12. The

second component does not explain the response variable considered. Also, due to this fact, the model

coefficients do not vary from the loadings of the first component and so the analysis will be based solely

on this metric.
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Figure 3.12: Loadings of the first component are given against batch maturity for each variable (pressure
as blue and temperature as yellow) for the solvent evaporation step in the crystallization of FP process.

All the crystallization steps occur at atmospheric pressure and so this is not a controlled (nor can it

be manipulated) variable during the process. Regarding temperature, the loadings show a lot of sudden

fluctuations during the course of the operation which means that the impact of the variable on yield is

changing very fast. There is no clear pattern on this contribution and so, no conclusion or action can be

drawn from the BLM model of the solvent evaporation analysis.

The BLM model for the antisolvent addition step has the following characteristics.

Table 3.7: BLM model statistics for the antisolvent addition step in FP crystallization and yield as the
response variable.

R2 Q2

Comp. 1 0.647 0.459

Cumulative 0.647 0.459

Since the model only has one component, the loadings of this first component are the same as the

model coefficients.

Figure 3.13: Loadings of the first component given against batch maturity for each variable (pressure as
blue, temperature as yellow, and agitator speed as red) for the antisolvent addition step in the crystal-
lization of FP process.

No comment will be made on the pressure contribution (blue line in figure 3.13) because the op-
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eration is carried out at atmospheric pressure. Regarding the temperature impact on the yield, it can

be observed that at the beginning of the operation it rises to be strongly positive (meaning that high

values of temperature lead to high values of yield) and then decays to be strongly negative. Combining

the yellow line in figure 3.13 with the variable profile two improvements could be proposed based on

this model: firstly, to promote faster heating at the beginning of the operation since up until the middle

of the duration, high temperatures favor high yields and secondly, to lower the final temperature target

since the impact of the variable is negative, high temperatures favor low yields. The agitator speed has,

during the entire antisolvent addition, a strong negative impact on yield, that is to say, high values favor

low yields. The only conclusion that can be withdrawn is that the indication to stay on CONFIDENTIAL

should be followed.

On both profiles, temperature and agitator speed, during antisolvent addition, batch 025 seems an

outlier. This is verified by Hotelling´s T2 plot for the model established.

Figure 3.14: Hotelling´s T2 for the BLM model built for the antisolvent addition.

An outlier has a huge effect on the model [10] and so, in order to evaluate if the same conclusions

could still be drawn, batch 025 was removed and a new BLM model was constructed.

Table 3.8: BLM model statistics for the antisolvent addition step in FP crystallization and yield as re-
sponse variable without batch 025.

R2 Q2

Comp. 1 0.669 0.553

Cumulative 0.669 0.553

An increase of 3.4% in R2 and of 20.5% in Q2 is observed when batch 025 is removed meaning

that a more accurate and robust model is actually obtained. The loadings for the first component are

presented below.
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Figure 3.15: Loadings of the first component given against batch maturity for each variable (pressure as
blue, temperature as yellow, and agitator speed as red) for the antisolvent addition step in the crystal-
lization of FP process with batch 025 removed from the model.

With the removal of the outlier from the model, both the agitator speed and temperature impact

remain unaltered meaning that the outlier observation was not twisting the conclusions previously stated.

The final crystallization step BLM model has the following fitting, presented in table 3.9.

Table 3.9: BLM model statistics for the cooling step in FP crystallization and yield as the response
variable.

R2 Q2

Comp. 1 0.648 0.535

Cumulative 0.648 0.535

A similar amount of variability explained by the model (R2) is obtained to the antisolvent addition

model. Values in this order of magnitude are considered good and therefore the models being presented

can be considered as robust models. Once again, since the model only has one component, the loadings

for the first component are presented.

Figure 3.16: Loadings of the first component given against batch maturity for each variable (pressure as
blue, temperature as yellow, and agitator speed as red) for the cooling step in the crystallization of FP
process.
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Once more, the contribution of the agitator speed is firmly negative and so, high values of agitator

speed lead to low values of yield during the entire operation. Still, the only conclusion that can be

withdrawn is to follow the indication to stay on CONFIDENTIAL during the operation. For pressure,

there are also no comments to add. Regarding the temperature´s impact on yield, it is clear that it stays

strongly positive during the entire cooling operation, apart from the very beginning in which there is an

almost vertical ascending contribution. The cooling rate for this operation is specified as CONFIDENTIAL

and overall, there are not many differences in the cooling ramp profile from batch to batch. However,

what the loadings of the model are exhibiting is that, although in some parts of the operation more evident

than others for example the loading peak at x-axis value around 200, lower cooling rates (meaning higher

temperatures) lead to higher yields. The contribution of temperature is positive during the final end of

the operation, meaning that, higher final temperatures lead to higher yields. The final temperature has

to be within the process interval: CONFIDENTIAL but there is the indication to aim at CONFIDENTIAL.

Filtration

The filtration step of FP process was also analysed. The drying step was not since it was an operation

classified as non-critical to the yield of the process. A BLM model with three components was obtained.

Table 3.10: BLM model statistics for the filtration step in FP process and yield as the response variable.

R2 Q2

Comp. 1 0.497 0.364

Comp. 2 0.341 0.165

Comp. 3 0.122 0.564

Cumulative 0.961 0.768

Since the BLM model for the filtration step has three components, the loadings will be presented on

a scatter plot like the loadings for a PCA model.

Figure 3.17: Loadings of the first component versus the second component for each variable (pressure
as blue, temperature as yellow, and agitator speed as red) for the filtration step in the FP process.

The Y variable is explained by both the first and second components. However, this does not happen
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to the third component and so the analysis will be focused only on the two first. Looking only at the

projections on the first component (x-axis), only temperature has a positive impact on yield during the

entire operation. However, looking at the projections for the second component (y-axis), the impact of

the variable in yield is close to null, sometimes being weakly negative and others weakly positive. This

way of displaying the loadings does not allow to identify which sections of the entire filtration had a

positive, negative, or null impact on yield. This is possible when displaying the loadings one component

at a time like it has been done until this point.

Figure 3.18: Loadings of the first component (top) and of the second component (bottom) given against
batch maturity for each variable (pressure as blue, temperature as yellow, and agitator speed as red) for
the filtration step in the FP process.

A closer look at both graphs on figure 3.18 tells that both pressure and agitator speed have a very

unstable contribution to yield according to the two components. This unstable relationship with the Y

variable is confirmed due to the also unstable and unstandardized variable profiles. Prior to optimization,

there must be a standardization step and these two cases are the proof of that. Regarding temperature,

confirming what was concluded with figure 3.17, according to the first component there is a positive

and strong relationship during all the extent of filtration with yield, meaning that higher temperatures

favor yield. That is not the case with the second component, where, although the yield is more poorly

explained than by the first component, there is a clear weak relation to the end of the operation with yield.

During the filtration, the temperature is not controlled, and the decreasing trend observed for all batches

is due to the transfer of the washings, which is done between CONFIDENTIAL and CONFIDENTIAL
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with no clearer indication. Attending only to the relation shown in the first component an improvement

action to be proposed could be to transfer the washings during filtration closer to the upper end of the

stipulated process interval.

3.3.1.4 Assay

FP process is the last chemical process in the production train of the API. Therefore, all operations

have tighter control and batches are of a much smaller size (much less input material quantity) than the

batches of the remaining intermediaries. All the analysis presented had, as response or Y variable, the

yield of this production step. Since it is the last chemical step before the final product, it is important to

check if the implementation of such measures to optimize yield will damage the process performance in

other equally relevant variables.

Process performance, in the context of chemical-pharmaceutical processes, can be viewed in terms

of throughput (the yield of the process) and quality. The variable found to cover quality performance was

the product´s assay. The assay is a different measure from purity. The latter is a quantitative measure,

a mere difference between the unit value and the sum of all the impurities. Contrary to this, the assay is

a measure of the potency or activity of a certain analyte (in this case, the desired API) on a substance

[63].

Once again, exploratory data analysis was employed in the first approach to the problem. A PCA

model for all the quality release results of FP (assay and impurities) and yield was constructed with two

PC´s: PC1 explains 0.505 of the variability in the data set and PC2 explains 0.202. No outliers were

found through Hotelling´s T2 and through DModX. The loadings scatter plot is presented below.

Figure 3.19: Scatter plot of the loadings for the PCA analysis of yield of FP production step and the
quality data of FP (impurities and assay).

Assay and yield are strongly and positively correlated, which, in theory, means that process changes

in order to maximize yield will also lead to a maximization of the assay. Nevertheless, the relevant BLM
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models were re-built considering the new response variable.

Table 3.11: BLM model statistics for the first component of the antisolvent addition, cooling, and filtration
step in FP production process considering yield and assay as response variables. The variation in
percentage from the models considering yield as response variable to the models considering assay is
also presented.

Response variable Yield Assay Variation (%)

Parameter R2 Q2 R2 Q2 R2 Q2

Antisolvent addition 0.647 0.459 0.612 0.497 -5.410 8.279

Cooling 0.648 0.535 0.873 0.516 34.722 -3.551

Filtration 0.497 0.364 0.754 0.656 51.710 80.220

There is never a strong decrease in both R2 and Q2 when modeling assay instead of yield. Also,

the increase in percentage is considerable when looking at the filtration step (only the first component

statistics are presented in table 3.11).

Figure 3.20: Loadings of the first component given against batch maturity for each variable (pressure as
blue, temperature as yellow and agitator speed as red) for the antisolvent addition step in the crystalliza-
tion of FP process with assay as the response variable.

The loadings profile for temperature displayed is very similar to the loadings profile displayed in figure

3.13. For the assay, it seems that in the middle of the operation, the positive impact of temperature is

less notorious than to yield since, in the latter, the loadings for temperature are in the same order of

magnitude as the response variable. However, the important fact to retain is that there is no contrary

relationship in the loadings of both temperature and agitator speed
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Figure 3.21: Loadings of the first component given against batch maturity for each variable (pressure as
blue, temperature as yellow, and agitator speed as red) for the cooling step in the crystallization of FP
process with assay as the response variable.

The same situation is verified for the cooling step of the crystallization. The temperature loadings

pattern for assay is similar to the one for yield (figure 3.16). Once more, the important thing to be retained

is that the contribution of both temperature and agitator speed to yield is not contrary to the contribution

to assay.

Figure 3.22: Loadings of the first component given against batch maturity for each variable (pressure
as blue, temperature as yellow and agitator speed as red) for the filtration step in the FP process with
assay as the response variable.

In the filtration step, the temperature loadings are positive and on the same order of magnitude as

the loading for assay, as it happens for yield (figure 3.18, top position).

The problem to be solved in this process improvement project was not related to the assay of the final

product, FP. However, it was deemed important to evaluate if the actions being proposed to optimize the

process in terms of throughput would not jeopardize the process performance in terms of quality. The

findings are that yield and quality go on the same way, i.e., optimizing throughput performance will also

lead to an optimization of quality performance.
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3.3.2 Intermediary 4 process step analysis

According to the PLS analysis conducted to exploit the dependence of yield with intermediary 4

quality data (analysis coefficients in figure 3.24), impurity H has the strongest negative impact on yield

followed by impurity G. The quality data of the input material on the last production step explains most of

the variability on yield, 86.3%, and the model has an excellent predictive ability, 79.3%, as shown by the

PLS model statistics in table 3.4. As such, and following the work methodology, the production step that

leads to the formation of intermediary 4 will also be modeled regarding impurity H and G as response

variables.

3.3.2.1 Quality

Only impurity H and impurity G, from the release data of intermediary 4 were considered for the

subsequent analysis. PCA modeling was performed with two PC´s: PC1 explaining 37.6% and PC2

27.5% yielding a cumulative fraction of variability explained by the model of 65.1%. No outliers were

found on the scores plot neither on the DModX plot. The loadings of the first two components are shown

below.

Figure 3.23: Scatter plot of the loadings for the PCA analysis of impurities H and G of intermediary 4 and
the quality data of intermediary 3. ”RRT” means relative retention time which is an analytical variable
that can be used to classify unknown molecules.

Both intermediary 4 impurities are equally described by PC1 and impurity with RRT of 1.96 seems

to have a strong positive effect on them. Impurity 35, according to PC1 has a negative relation with

impurity H which means that high values of impurity 35 lead to lower values of impurity H.

A more incisive method is necessary and a PLS model is fitted to the data set, considering firstly

impurity H as the response variable and then impurity G.

For impurity H, a PLS model with just one component was obtained and the model statistics are

presented in the table below.
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Table 3.12: PLS model statistics for impurity H of intermediary 4 as the response variable and the quality
data of intermediary 3 as independent variables.

R2 Q2

Comp. 1 0.664 0.215

Cumulative 0.664 0.215

Such a big difference between the model performance (described by R2) and its predictive ability

(Q2) may indicate over-fitting of the data. Model complexity cannot be reduced since the PLS model

only has one component.

Figure 3.24: PLS model coefficients for the several impurities present in the intermediary 3 quality data
against impurity H of intermediary 4.

Impurity 35 still has a negative impact on impurity H which can be seen as an odd relationship. Both

impurities that appear with an RRT of 2.56 and 1.96 can be seen as precursors of impurity H.

Impurity G is now taken as the response variable, instead of impurity H and the intermediary 3 quality

data is modeled against the new variable of interest.

Table 3.13: PLS model statistics for impurity G of intermediary 4 as the response variable and the quality
data of intermediary 3 as independent variables.

R2 Q2

Comp. 1 0.255 -0.068

Comp. 2 0.031 -0.525

Cumulative 0.286 -0.175

A very small fraction of the variability explained in the Y-variable by the model, together with negative

predictive ability lead to the conclusion that impurity G does not depend on any of the substances present
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in the release data of intermediary 3 and so the elimination of the intermediary 4 impurity G content will

have to derive from the analysis of the production process in question.

3.3.2.2 Process photograph

As seen in table 3.4, the impurities present in the input material to the FP process step explain most

part of the variability in the yield which is the primary problem to be solved on this project. However, in

order to establish concrete improvement actions, a further step back has to be taken in order to evaluate

which sections of the intermediary 4 process step are causing the increase in the identified impurities

that lead to a decrease in yield.

Exploratory data analysis was conducted to process photograph type of data. For the subsequent

analysis (also regarding process film type of data) only 8 production batches will be analysed. Although

being considered a very small number of batches, data was only available for these batches and so, the

analysis was carried on. With the non-relevant variables excluded, regression analysis was performed

following the same strategy already described: adding and eliminating variables until the best model

was found. For impurity H the following model was obtained.

Table 3.14: PLS model statistics for impurity H as the response variable and the process photograph
type of variables for intermediary 4 process step.

R2 Q2

Comp. 1 0.940 0.650

Comp. 2 0.041 0.504

Cumulative 0.981 0.826

An excellent fitting is observed of the selected independent variables against impurity H as Y-variable.

The model coefficients are presented below in figure 3.25.
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Figure 3.25: PLS model coefficients for the process variables (process photograph type of data) against
impurity H. ”Load RM” is the time took for the charging of the raw material (intermediary 3); ”1st degas”
is the time took on the first degassing step; ”Load salt1” is the time took to charge the first inorganic salt;
”2nd degas” is the time took on the second degassing step and ”Load salt2” is the time took to charge
the second inorganic salt.

Impurity H is formed whenever an oxidizing agent is present and so, the process step being analysed

has multiple degassing steps prior to the main reaction. The most relevant terms included in the model

are precisely the duration of operations deeply related to the entrance or exiting of oxygen in the process

vessel, the degassing steps, and the loading of the reactants: a positive relation of the time took to load

the reactants is observed meaning that more time spent on loading the reactants yields more impurity

H content in intermediary 4 and a negative relation of the degassing duration is observed meaning that

less time spent on this operations, more impurity H content will be detected. All these findings are

natural since the major motif for the impurity‘s formation is the presence of an oxidizing agent, in this

case, oxygen.

The timely evolution of the variables being analysed is depicted in figure 3.26.
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Figure 3.26: Evolution of the duration of the degassing and loading of reactants. Figure a), b) and c) are
the duration of the loading raw materials, the first and second innorganic salt respectively, and figures d)
and e) are the first and second degassing steps respectively.

For the degassing steps, figure 3.26 part d) and e), a negative trend on the more recent production

batches is observed which is not the desired state since more time spent on these operations leads to

less impurity H content in the process output. In the same way, a decreasing trend is observed on more

recent batches for the time took to load the reactants, figure 3.26 part a), b) and c). Contrary to the

degassing steps, where low operational times favor high impurity content, here, low duration favors low

impurity content due to the lower atmosphere exposition, thus reducing the oxygen level.

For impurity G, no set of meaningful terms was found to be statistically relevant so, no analysis of

the process photograph type of data was conducted considering impurity G as the response variable.

However, the process film type of data will be analysed for both impurities since the effort needed for

that is very low and the fact that, although important to get an overview of some critical operations and

gain process knowledge, the process photograph data analysis results do not fully condition process

film analysis.

3.3.2.3 Process film

Process film type of data was analysed, firstly at an exploratory level with BEM and then, considering

both impurities H and G as response variables for BLM. Data was only available for 6 production batches.

Batch Evolution Model

The process equipment for the intermediary 4 production step is different from the FP step. Still,

there is no use in displaying the scores for evaluating deviating batch trajectories since the variables

being recorded are few (for intermediary 4 equipment the jacket temperature is also recorded). The

variable profiles will be analysed separately for the pre-reaction, reaction, crystallization and filtration

steps.

The pre-reaction operations comprise the degassing steps and the loading of the reactants (the

inorganic salts). For the first degassing step, the pressure profile presents random negative peaks, which

are deeply related with the vacuum applied in the degassing step. During these steps, the temperature

should be between CONFIDENTIAL and CONFIDENTIAL, but preferably closer to the lower limit. The

agitator speed is supposed to be at CONFIDENTIAL but there were two batches that the variable was
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set at CONFIDENTIAL. After the first degassing, the load of the first salt takes place followed by another

degassing step. The temperature shows an overall increasing tendency. This is due to the fact that the

jacket temperature is reduced to zero and remains constant during the entire subsequent operations,

until the end of the reaction. Regarding, the agitator speed profile, the scenario for the first degassing

step is repeated with two deviating batches not following the CONFIDENTIAL indication. The charge

of the second salt is followed by another degassing step. The temperature is kept under the stipulated

limit and the scenario for the agitator speed is the same as for the first degassing step and for the

charge of the first salt. Finally, the reaction takes place with the slow addition of the final reactant in the

gaseous state but liquefied upon entering the reactor. This is the cause for the decreasing tendency in

the pressure profile for all analysed batches, at the beginning of the operation. The random peaks of

pressure observed are due to the several purges carried out to rinse out the gas bottle. The temperature

during the reaction is supposed to be between CONFIDENTIAL and CONFIDENTIAL with no clearer

indication, which generates some variability in the temperature profiles for the operation. The scenario

regarding the agitator speed is the same as in the previous steps: two batches had the agitator set-point

at CONFIDENTIAL instead of the stipulated CONFIDENTIAL.

The intermediary 4 crystallization is performed over two sequential steps: antisolvent addition and

cooling. On the reactor where crystallization takes place, the sensors for pressure, agitator speed, and

temperature had a different recording in the automation system on the vast majority of the analysed

production batches and so, point values of the variables were rounded to units. During the antisolvent

addition, pressure oscillates randomly between CONFIDENTIAL and CONFIDENTIAL. This variable

profile is not to be regarded given the problem in the sensors. In the level sensor, there was no problem

and so the variable profile is worth analysing. All batches fulfilled the indication of adding the antisolvent

in at least CONFIDENTIAL, however, some batches took way longer. The level profiles follow the same

pattern up until CONFIDENTIAL of addition when the differences start to occur: in some batches, the re-

maining quantity of antisolvent is added abruptly and on other batches, the smooth profile is maintained.

Concerning the agitator speed profile, strongly different strategies were followed on the considered pro-

duction batches. Since the antisolvent addition is an exothermic operation at the beginning, it is normal

to observe a slight increase in temperature which is then followed by an overall decrease because the

temperature is supposed to be within the process limits (CONFIDENTIAL<T(ºC)<CONFIDENTIAL).

The strategy to maintain the temperature in the reactor is irregular since the jacket temperature profile

does not show any clear and identifiable tendency. Regarding the cooling step of the crystallization,

the pressure was set, during the entire operation as CONFIDENTIAL. The agitator speed assumed dif-

ferent and sometimes changing values for the considered production batches. These differences will

be analysed in terms of BLM with the response variables. The cooling ramp on intermediary 4 is less

tightly controlled than in the FP process, however, on all analysed batches, the final temperature was

inside the process limits (CONFIDENTIAL<T(ºC)<CONFIDENTIAL). To complete this cooling step, the

jacket temperature presents a completely random evolution with time. The cooling ramp is controlled in

an arbitrary manner, indicating the way for standardization to take place, before any optimization takes

place.
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The variable profiles for the filtration step, especially pressure and agitator speed appear as random

as the ones for FP process. Regarding temperature, a clear increasing trend is observed which is due

to the fact that the washings transferred are at a higher temperature than the cake inside the filter-dryer.

Batch Level Model

Following the same analysis path as to FP production process, BLM was applied to the data consid-

ering the two impurities identified as critical, impurity H and G. The results will be presented firstly for

impurity H and secondly for impurity G. Only operations with relevant models, that actually can be the

basis for optimization actions, will be presented: the variable profiles during the crystallization and the

filtration were found to not have any relevant influence on both response variables considered, impurity

H and G.

Impurity H

The charge of the first salt was modeled against impurity H and the following model was obtained.

Table 3.15: BLM model statistics for the charge of the first salt in intermediary 4 reaction step and
impurity H as the response variable.

R2 Q2

Comp. 1 0.877 0.630

Comp. 2 0.107 0.695

Cumulative 0.984 0.887

Since the best model has two components, the loadings will be presented on a scatter plot, colored

by variable.

Figure 3.27: Loadings of the first component versus the second component for each variable (pressure
as blue, temperature as yellow, and agitator speed as red) for the charge of the first salt during the
reaction step of intermediary 4 process.

Given the very low relevance of the second component to the current response variable, only the

loadings of the first component will be analysed versus batch maturity, as it has been done until this

point.
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Figure 3.28: Loadings of the first component given against batch maturity for each variable (pressure as
blue, temperature as yellow, and agitator speed as red) for the charge of the first salt during the reaction
step of intermediary 4 process.

A strong positive relationship of the agitator speed with impurity H during the entire operation is

verified: high values of agitator speed, during the entire operation, yield high values of impurity H in

intermediary 4. Only two batches had agitation profiles higher than CONFIDENTIAL, which is the pro-

cess indication for this variable. As such, in order to lower impurity H content in the process output, this

indication should be followed. Throughout the steps that comprise the reaction of intermediary 4 (the

degassing steps and loading of reactants), this positive relation with impurity H is verified, due to the

outlier batches that had the agitator set-point at CONFIDENTIAL. As such, the indication to stay at CON-

FIDENTIAL should be followed during all these steps. In regards to temperature, a negative relation is

verified, which is especially relevant (more negative) in the middle of the charge but never actually gets

positive. The temperature is kept within the process limits (CONFIDENTIAL<T(ºC)<CONFIDENTIAL)

but there is the indication of staying as close as possible to the lower limit of the interval. Given the rela-

tion presented above, lower values for temperature during the entire operation will increase the content

in impurity H thus decreasing the yield in FP process.

A similar model was built to check if the temperature relation with impurity H was maintained during

the load of the second salt. The following model with two components was obtained.

Table 3.16: BLM model statistics for the charge of the second salt in intermediary 4 reaction step and
impurity H as the response variable.

R2 Q2

Comp. 1 0.883 0.500

Comp. 2 0.096 0.651

Cumulative 0.979 0.825

It is important to point out that both models exhibit a great fitting to the data, giving more robustness

to the improvement actions that are withdrawn from them.

The loadings scatter plot for the model concerning the second salt charge are presented below.
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Figure 3.29: Loadings of the first component versus the second component for each variable (pressure
as blue, temperature as yellow, and agitator speed as red) for the charge of second salt during the
reaction step of intermediary 4 process.

The first component is the only one that is actually relevant to the response variable. The main thing

to withdraw from this analysis is that temperature does not present a strong positive relation with impurity

H. There are some parts of the operation where in fact there is positive relation with the response variable

but it is not to be concerned since it is a weak relation. Consequently, the improvement action taken from

the modeling of the load of the first salt can be extended to the load of the second salt. It is worth recalling

that these models are only considering one response variable and that the relations presented can be

changed when considering other variables, like other impurities or the process throughput.

Finally, the reaction itself (the addition of the main reactant) is modeled. A model with two compo-

nents and a good fitting was obtained.

Table 3.17: BLM model statistics for the reaction step in intermediary 4 and impurity H as the response
variable.

R2 Q2

Comp. 1 0.805 0.561

Comp. 2 0.147 0.445

Cumulative 0.952 0.757

Due to the fact of having two components, the loadings are presented firstly on a scatter plot, has it

has been done.
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Figure 3.30: Loadings of the first component versus the second component for each variable (pressure
as blue, temperature as yellow and agitator speed as red) for the reaction step of intermediary 4 process.

Once again, the second component is much less relevant to the response variable than the first

component, allowing it to analyse, on a timely basis, only the loadings for the first component, as they

are presented in figure 3.31.

Figure 3.31: Loadings of the first component given against batch maturity for each variable (pressure as
blue, temperature as yellow and agitator speed as red) for the reaction step of intermediary 4 process.

The relation of agitator speed with the response variable is maintained and the indication to stay at

CONFIDENTIAL should be followed. For temperature, a non-relevant impact is observed through the

vast majority of the reaction, with the loadings being close to zero, which is followed by a sudden negative

and positive peak. These changing contributions cannot yield any action to optimize the response

variable. A closer and combined look at the pressure profile and the loadings for pressure reveals

that the peaks in the variable profile coincide with the peaks in the loadings. Setting aside the positive

peaks on the loadings, a clear negative and strong relation, especially at the beginning of the addition

of the main reactant is observed between the variable and impurity H. In order to decrease impurity H

content in the process output, higher pressures should be kept during the initial phase of addition.
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Impurity G

The charge of the first salt was modeled against the new response variable, impurity G. A two-

component model was obtained.

Table 3.18: BLM model statistics for the charge of the first salt in intermediary 4 reaction step and
impurity G as the response variable.

R2 Q2

Comp. 1 0.584 0.255

Comp. 2 0.370 0.135

Cumulative 0.954 0.355

A big difference is actually observed between R2 and Q2 which might indicate over-fitting. However,

the variation in Q2 from the first to the second component is positive and so, a two-component model

will be analysed. The loadings scatter plot are presented below.

Figure 3.32: Loadings of the first component versus the second component for each variable (pressure
as blue, temperature as yellow, and agitator speed as red) for the charge of the first salt during the
reaction step of intermediary 4 process.

The response variable is explained by both components in a similar way, given its projections on the

y and x-axis. Consequently, for the complete analysis of this operation, both components will be plotted

against batch maturity.
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Figure 3.33: Loadings of the first component (top) and the second component (bottom) given against
batch maturity for each variable (pressure as blue, temperature as yellow, and agitator speed as red) for
the charge of the first salt during the reaction step of intermediary 4 process.

The agitator speed contribution to the response variable differs from the first component to the second

component. Looking at figure 3.32, no concrete conclusion can be taken concerning this variable due

to the low relevance to the response variable according to each individual component and also due to

different contributions (positive for the first component and negative for the second component). A closer

look at the contribution of temperature on each component reveals a similar pattern. Although positive in

the beginning, the impact of temperature abruptly becomes negative according to both components and

stays negative (on some parts of the operation more than others) during the rest of the operation. As

such, lower values of temperature favor the increase in impurity G content, which decreases yield in FP.

It is important to mention that this relation is the same for impurity H (figure 3.28), adding up robustness

to the improvement action taken from the models: to stay at higher temperatures in order to decrease

both impurities content in intermediary 4.

3.4 Improve

A systematization of all the statistical conclusions took during the previous DMAIC cycle phase and

a translation of those conclusions into tangible and feasible measures are the main goals of this fourth

stage of the process improvement project.
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3.4.1 Statistical Analysis Summary

3.4.1.1 FP process step

The analysis conducted to FP process had as response variable the yield of the final production step.

From process photograph analysis, it was concluded that higher time spent on the addition of the anti-

solvent during crystallization, favored higher yields, as seen in figure 3.11. The level profile is mandatory

to analyse in this case since differences in the addition pattern (which are unknown) are also crucial to

the response variable being considered. The improvement action that can be taken out from this analysis

is that a level sensor should be integrated into the reactor where FP crystallization takes place.

The filtration step was found to have random profiles for both pressure and agitator speed. As

previously stated, this operation is hard to standardize in an operational point of view. Before any

optimization can take place, an effort for standardization should be put in place.

Under BLM analysis, during the antisolvent addition in the crystallization step, an higher heating rate

in the first half of the operation leads to higher yields, as seen on the loadings given for the first com-

ponent, in figure 3.15. It is also noticeable that higher final temperatures lead to lower yields. However,

the targeted final temperature during this step corresponds to the process reflux temperature, to which

the solvent continues to evaporate and therefore cannot be changed. For the subsequent cooling step

in the crystallization, a lower cooling rate (but still under the process indication of around CONFIDEN-

TIAL) favors higher yields (figure 3.16). Also represented in the loadings of this operation, higher final

temperatures also favor higher yields. The process interval for the final temperature in this operation

is between CONFIDENTIAL and CONFIDENTIAL with the indication to target CONFIDENTIAL. This

indication could be increased, but still within the process limits, in order to increase yield. The filtration

BLM model has two components with despairing contributions of temperature for the response variable

(figure 3.18): the first component shows a positive relationship and the second shows a changing but

mainly weak negative relation. Considering that the change in temperature inside the filter is due to the

transfer of the washings at a low temperature and attending only to the relation shown in the first com-

ponent an improvement action to be proposed could be to transfer the washings during filtration closer

to the upper end of the stipulated process interval. All these actions were found, as already exposed, to

affect product quality in the same way, that is to say, yield and quality go hand in hand.

3.4.1.2 Intermediary 4 process step

Impurity H and impurity G were the two response variables considered for intermediary 4 process

step statistical analysis. It is important to mention that all the analysis conducted to intermediary 4

production step were carried with a small number of observations leading to an inevitable loss in terms

of robustness.

No set of relevant process photograph variables were found to correlate to impurity G with meaningful

statistical parameters (R2 and Q2). For impurity H, operations where the reactor‘s content can be in

contact with the atmosphere and the degassing operations, were regarded as very explanatory as seen

in the model statistics presented in table 3.14. More time spent on degassing operations and less time
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spent on the charge of the reactants will strongly diminish impurity H‘s content in intermediary 4, as

shown in the model coefficients in figure 3.25.

Once again, the filtration presents itself as a highly variable operation regarding pressure and agitator

speed and standardization actions should be put in place.

Through BLM analysis it was found that, taking impurity H as the response variable, the agitator

speed during all the reaction steps (loading of reactants and reaction itself) should be set as 90 rpm.

During the inorganic salts load, higher temperatures favor low impurities content (both H and G) in the

output, as seen in figures 3.28, 3.29 and 3.32. There is the indication to preferably stay at the lower

limit of the process temperature interval (CONFIDENTIAL<T(ºC)<CONFIDENTIAL) which, considering

just these two impurities as response variables, should be changed in order to target the higher end of

the interval. The reaction itself was also modeled and it was found that higher pressures led to lower

impurity H content (figure 3.31). The main reactant load is done through an auxiliary gas cylinder which

is heated in order to keep its content in the gaseous state. A straightforward way to increase pressure in

the reactant addition would be to increase the temperature of the gas cylinder. However, this measure

could attach countless safety-related additional risks that were not studied. The implementation of this

improvement action was left for the production team to carefully analyse.

3.4.2 Prioritization

After the statistical analysis results translation into concrete improvement actions, a prioritization

method is imperative to apply in order to sort which actions will be tackled first and the number of

resources needed. This classification is based on two parameters: impact and effort. The classification

based on the former is empirical, based on process knowledge that the production team has been

gathering through the batches, and is done on a scale of 1 to 10. The classification based on the latter is

performed according to statistical parameters (R2 and Q2) that are assigned by performing a statistical

model considering just the variable of interest. The values obtained for R2 and Q2 are summed in order

for the impact classification to reflect both the fitting of the model but also its predictive ability.
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Based on the impact and effort classification presented in table 3.19, the improvement actions are

now placed on an Impact Vs. Effort matrix, divided into four quadrants that guide the prioritization

process.

Figure 3.34: Impact Vs. Effort matrix with the improvement actions identified by their ID defined on table
3.19 and colored by response variable.

The top-left quadrant (second quadrant) comprises actions with high impact and low effort. Actions

7, 10, and 13 are placed in this quadrant with the highest impact and the lowest effort and aim at the

reduction of impurity H content in intermediary 4 through the following of the indication to stay at CON-

FIDENTIAL during all pre-reaction and reaction steps. Also on this quadrant is the only improvement

action that focuses on reducing impurity G content by staying at the higher end of the process tem-

perature interval during the inorganic salts’ loading. Considering the increase in yield of FP, two more

actions are placed on the second quadrant: action 1 which relates to faster heating up until the middle of

antisolvent addition, and action 4 which relates to the transfer of the washings (during filtration) closer to

the higher end of the process temperature interval. All these actions that fall in the second quadrant of

the matrix can be coined ”Quick Wins” and are the ones that should be tackled first because they yield

the best return based on the effort.

Actions placed on the first quadrant require a high effort but have also a higher impact. This group

of actions can be coined ”Major Projects”. Included in this group are the two actions for the yield of FP

optimization concerning the cooling step of the crystallization, and also two actions for the decrease in

impurity H content on intermediary 4: action 9 that is related to faster loading of the second salt during

the pre-reaction steps and action 14 that is related to the increase in pressure during the early stages of

the reaction.

The third quadrant comprises actions that require little effort but also provide fewer returns and can be

called ”Incremental Actions” because these are actions to pursue whenever there are spare resources.
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All the actions in this group are meant to reduce impurity H´s content through either more time on the

degassing steps or by staying closer to the higher end of the process temperature interval during the

inorganic salts´ load.

Finally, there are the ”Money Pits”, improvement actions that require a lot of effort and do not give a

substantial amount of return.

3.5 Control

The final phase of the DMAIC process improvement cycle has one major goal: to sustain the im-

provements. There are several ways of achieving this goal, however, in this project, only control charts

and a summary flowchart will be used.

3.5.1 Flowchart

After an extensive analysis of the primary problem (high variability on the FP process yield) with the

root causes being uncovered, it is necessary to implement frameworks within the organization to make

sure that the process understanding gained will not be lost. In this line, an internal KPI value for the FP

process yield will be established by the production team. Whenever a FP batch has a lower than the

KPI yield, an internal investigation is triggered. In order to systematize all the knowledge created during

the project and to serve as an aiding tool for the internal investigations, a flowchart was elaborated and

is presented in annex C.

3.5.2 Control Charts

One of the most common tools to apply in the final phase of DMAIC cycles are the control charts that

are mainly used for process monitoring.

The flowchart for the internal investigations is a great tool for guiding the process of analysing con-

cluded batches and spot what was the cause for a deviation that has already happened. Instead of

acting on the problem, a preventive tool like the control charts is essential to actively monitor the pro-

cess and sustain the improvements in real time. In this way, an interactive Excel file was created, to be

filled by the operators with quick and easy to obtain process data (like temperatures displayed and start-

ing and ending times for the operations). Control charts were created and are updated automatically,

as the data is filled in. Bellow, an example of one of these control charts is presented. It is important

to mention that Dr. Shewart suggested that in order to build a control chart, i.e., to establish the control

limits, 25 samples should be used [32]. However, in the present case, only 16 samples (or observations

or batches) will be used since the data was only available over the considered period of time.
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Figure 3.35: Control chart of the final temperature in the cooling step of the crystallization of FP. Above
the red dashed line lies 25% of the data assuming normal distribution.

The example shown in figure 3.35 shows the final temperature in the cooling step of the crystallization

during FP process. The 3σ limits are displayed as well as the process mean. In this specific operation,

it was found through the statistical analysis performed, that higher final temperatures would lead to

higher yields (recall figure 3.16; action number 3 in table 3.19). Consequently, a red line was drawn

in the chart that marks the 25% highest point values. In order to achieve higher yields (and still within

the process temperature interval, CONFIDENTIAL<T(ºC)<CONFIDENTIAL), final temperatures for this

operation should be systematically above the 25% mark. It is important to mention that the choice of the

percentage was empirical and can be changed when deemed convenient by the production team.
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Chapter 4

Conclusions

Framed on Hovione´s Sete Casas production site continuous improvement plan, the present work

aimed at the yield optimization of a production process of a generic corticosteroid API, fluticasone pro-

pionate.

Six Sigma´s DMAIC process improvement and the problem-solving cycle was the chosen methodol-

ogy to approach the problem. The project was divided into five separated and clearly defined phases:

define; measure; analyse; improve and control, which have proven to succeed on continuous improve-

ment projects. Combined with the DMAIC cycle, a backwards methodology was applied: after identifying

the problem in the process output (the high variability on FP process yield), the root causes will be un-

covered going in reverse through the API production train. In this way, a channeling of the efforts to the

process steps where the principal causes of the problem are is performed.

Ranging from July 2018 to January 2021, 40 production batches were included in the analysis. Over

this period, yield took an average value of 81.83% with a standard deviation of 2.22%. The minimum

and maximum values were 77.30% and 86.30% which is 11% of the variable mean. High yield variability

leads to biased and uncertain production planning (especially in a multi-purpose installation as is the

case) and poor use of company resources since the batch costs do not change with the throughput ob-

tained. The parameter used to quantify the problem was the missed opportunities per year (considering

that 17 batches of FP are produced per year and the product is sold for CONFIDENTIAL per gram) if

during the analysed timeline all batches had a yield equal to the chosen optimization set-point. If all

batches had a yield equal to 86.83%, the losses to yield variability on a yearly basis account roughly as

one production batch which is translated into CONFIDENTIAL million dollars.

Process mapping was followed in order to further increase process familiarization. The two types of

batch data were collected: process photograph and process film types of data.

Only the two last steps on the API production train were statistically analysed, the step leading to FP

and to intermediary 4. Starting off with the FP step, it was found that the input quality data explained

86.3% of yield variability, being impurity H firstly and impurity G secondly, the ones with the most negative

impact. Nevertheless, given the high percentage of variability explained by the input quality data, the

process variables were also analysed. It was found that the antisolvent addition step could have a big
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impact on yield and so, a level sensor should be installed on the crystallization reactor. It was also

found that both pressure and agitator speed, the controlled variables on the filtration process, presented

random profiles and so, before any optimization action, a standardization effort should be put in place.

Under BLM analysis (where only 16 production batches were considered), a heating rate during the

first half of antisolvent addition was found to favor yield as well low agitator speeds. These conclusions

are supported by a model that explains 64.7% of yield variability. On the subsequent crystallization

step, the cooling step, it was noticed that lower cooling rates (but still around CONFIDENTIAL) and

higher final temperatures (but within the process interval, CONFIDENTIAL<T(ºC)<CONFIDENTIAL)

gave higher yields. On the filtration step, temperature, which is not manipulated during the operation,

correlated positively with yield: The washings transfer could be done closer to the higher end of the

process interval in order to stay at higher temperatures inside the equipment. All the relevant models

were re-built considering the final product´s assay as the response variable instead of yield. It was found

that the variables’ contributions were not different from those considering yield as the response variable

and so, in the case of FP process step, quality performance and throughout performance go hand in

hand.

The analysis on the intermediary 4 process step had as response variables impurity H and G. For

impurity H, which is formed whenever an oxidizing agent is present, the time of the degassing operations

was found to be negatively correlated (higher time on these operations led to lower impurity content) and

the time for the reactants load was found to be positively correlated (higher time on these operations led

to higher impurity content). The two components model built for this set of variables explains 98.1% of

impurity H´s variability on the analysed batches. As was the case for FP filtration step, on intermediary

4 both pressure and agitator speed presented random profiles. On the BLM models constructed for

this process step, data was only available for 6 production batches. For both impurity H and G, during

the load of the inorganic salts, the temperature was found to be negatively correlated. This being said,

in order to reduce impurity H content in intermediary 4, during these steps, the temperature should

be closer to the higher end of the process interval (CONFIDENTIAL<T(ºC)<CONFIDENTIAL). These

models explain a big part of the response variable variability (98.4% for the first salt load and 97.9%

for the second). For impurity G, the temperature contribution during these operations was no different.

During the beginning of the reaction with BMF, the pressure was discovered to be negatively correlated

with impurity H given the two components model that explains 95.2% of the response variable variability.

Pressure could be increased by the increase of the reactant´s gas cylinder temperature. Various health

and safety risks could rise up and were not studied. Still, regarding impurity H as the response variable,

the agitator speed was found to be, through all pre-reaction and reaction steps, positively correlated.

The process indication to stay at CONFIDENTIAL should be followed.

After concluding the statistical analysis phase of the project, an Impact Vs. Effort matrix was built for

the improvement actions taken. The actions with low effort and high impact, termed ”Quick Wins” are

related to the agitator speed during the pre-reaction and reaction step regarding impurity H as response

variable; to stay at the higher end of the process temperature interval during the load of inorganic salts

regarding impurity G as response variable; to transfer the washings, during FP filtration, closer to the
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higher end of the process temperature interval and to promote faster heating in the first half of antisolvent

addition, during the FP crystallization regarding both yield as response variables.

An interval KPI minimum yield value will be established by the production team and whenever a

batch performs under the established KPI, an internal investigation will take place, based on the process

understanding generated. As such, an aiding flowchart was constructed to help out the team in these

investigations and an interactive Excel file with univariate control charts of relevant operations.

For future work, in order to increase the robustness of intermediary 4 models, more production

batches should be incorporated since data was only available for 6. Taking a more holistic approach,

this project should serve as the basis for a demystification of MVDA applied to chemical synthesis

pharmaceutical processes. These processes are very complex and the black-box statistical approach is

the one to take for process improvement.
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